Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ from langchain.embeddings import HuggingFaceEmbeddings
|
|
5 |
from langchain.vectorstores import FAISS
|
6 |
from langchain.llms import HuggingFaceHub
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
8 |
|
9 |
# Load the HuggingFace language model and embeddings
|
10 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
@@ -16,29 +17,14 @@ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-b
|
|
16 |
vector_store = None
|
17 |
retriever = None
|
18 |
|
19 |
-
def update_documents(
|
20 |
global vector_store, retriever
|
21 |
-
# Split the input text into individual documents based on newlines or other delimiters
|
22 |
-
documents = text_input.split("\n")
|
23 |
-
|
24 |
# Update the FAISS vector store with new documents
|
25 |
vector_store = FAISS.from_texts(documents, embeddings)
|
26 |
-
|
27 |
-
# Set the retriever to use the new vector store
|
28 |
retriever = vector_store.as_retriever()
|
29 |
return f"{len(documents)} documents successfully added to the vector store."
|
30 |
|
31 |
-
|
32 |
-
rag_chain = None
|
33 |
-
|
34 |
-
def respond(
|
35 |
-
message,
|
36 |
-
history: list[tuple[str, str]],
|
37 |
-
system_message,
|
38 |
-
max_tokens,
|
39 |
-
temperature,
|
40 |
-
top_p,
|
41 |
-
):
|
42 |
global rag_chain, retriever
|
43 |
|
44 |
if retriever is None:
|
@@ -68,27 +54,21 @@ def respond(
|
|
68 |
# Return the model's response
|
69 |
return response['answer']
|
70 |
|
71 |
-
def upload_file(
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
def download_file():
|
76 |
-
return [gr.UploadButton(visible=True), gr.DownloadButton(visible=False)]
|
77 |
|
78 |
# Gradio interface setup
|
79 |
demo = gr.Blocks()
|
80 |
|
81 |
with demo:
|
82 |
with gr.Row():
|
83 |
-
|
84 |
-
with gr.Row():
|
85 |
-
u = gr.UploadButton("Upload a file", file_count="single")
|
86 |
-
d = gr.DownloadButton("Download the file", visible=False)
|
87 |
-
|
88 |
-
u.upload(upload_file, u, [u, d])
|
89 |
-
d.click(download_file, None, [u, d])
|
90 |
|
91 |
-
|
|
|
|
|
92 |
with gr.Row():
|
93 |
# Chat interface for the RAG system
|
94 |
chat = gr.ChatInterface(
|
@@ -101,8 +81,5 @@ with demo:
|
|
101 |
],
|
102 |
)
|
103 |
|
104 |
-
# Bind button to update the document vector store
|
105 |
-
# upload_button.click(update_documents, inputs=[doc_input], outputs=gr.Textbox(label="Status"))
|
106 |
-
|
107 |
if __name__ == "__main__":
|
108 |
demo.launch()
|
|
|
5 |
from langchain.vectorstores import FAISS
|
6 |
from langchain.llms import HuggingFaceHub
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
+
from pathlib import Path
|
9 |
|
10 |
# Load the HuggingFace language model and embeddings
|
11 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
|
|
17 |
vector_store = None
|
18 |
retriever = None
|
19 |
|
20 |
+
def update_documents(documents):
|
21 |
global vector_store, retriever
|
|
|
|
|
|
|
22 |
# Update the FAISS vector store with new documents
|
23 |
vector_store = FAISS.from_texts(documents, embeddings)
|
|
|
|
|
24 |
retriever = vector_store.as_retriever()
|
25 |
return f"{len(documents)} documents successfully added to the vector store."
|
26 |
|
27 |
+
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
global rag_chain, retriever
|
29 |
|
30 |
if retriever is None:
|
|
|
54 |
# Return the model's response
|
55 |
return response['answer']
|
56 |
|
57 |
+
def upload_file(file):
|
58 |
+
text = file.read().decode("utf-8") # Read file content
|
59 |
+
documents = text.split("\n") # Split into documents
|
60 |
+
return update_documents(documents)
|
|
|
|
|
61 |
|
62 |
# Gradio interface setup
|
63 |
demo = gr.Blocks()
|
64 |
|
65 |
with demo:
|
66 |
with gr.Row():
|
67 |
+
u = gr.UploadButton("Upload a file (txt)", file_count="single", file_types=[".txt"])
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
# Process the uploaded file
|
70 |
+
u.upload(upload_file, u, gr.Textbox(label="Status", visible=True))
|
71 |
+
|
72 |
with gr.Row():
|
73 |
# Chat interface for the RAG system
|
74 |
chat = gr.ChatInterface(
|
|
|
81 |
],
|
82 |
)
|
83 |
|
|
|
|
|
|
|
84 |
if __name__ == "__main__":
|
85 |
demo.launch()
|