File size: 29,378 Bytes
8af436a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54e2641
 
 
 
 
 
 
 
 
8af436a
54e2641
 
 
 
8af436a
 
 
 
 
 
 
54e2641
 
 
 
 
 
 
 
 
8af436a
54e2641
 
 
 
8af436a
 
 
 
 
 
 
 
54e2641
 
 
 
 
 
 
 
 
8af436a
54e2641
 
8af436a
 
54e2641
 
 
8af436a
 
54e2641
 
 
8af436a
54e2641
8af436a
 
 
54e2641
 
8af436a
54e2641
 
8af436a
54e2641
 
8af436a
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
import os, re
import zipfile
import shutil
import time
from PIL import Image, ImageDraw, ImageFont
import io
from rembg import remove
import gradio as gr
from concurrent.futures import ThreadPoolExecutor
from diffusers import StableDiffusionPipeline
from transformers import pipeline
import numpy as np
import json
import torch

class LoadModel:
  def __init__(self):
    self.device = "cuda" if torch.cuda.is_available() else "cpu"

  def get_stable_diffusion_model(self):
    return StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float32).to(self.device)

  def get_bria_model(self):
    return pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True, device=self.device)

  def remove_background_bria(self, input_path, pipeline):
    print(f"Removing background using bria for image: {input_path}")
    result = pipeline(input_path)
    return result

  def remove_background_rembg(self, input_path):
      print(f"Removing background using rembg for image: {input_path}")
      with open(input_path, 'rb') as i:
          input_image = i.read()
      output_image = remove(input_image)
      img = Image.open(io.BytesIO(output_image)).convert("RGBA")
      return img

class ImageProcessor:
    def __init__(self):
        self.model_loader = LoadModel()
        self.bria_pipeline = self.model_loader.get_bria_model()

    def get_bounding_box_with_threshold(self, image, threshold):
        # Convert image to numpy array
        img_array = np.array(image)

        # Get alpha channel
        alpha = img_array[:, :, 3]

        # Find rows and columns where alpha > threshold
        rows = np.any(alpha > threshold, axis=1)
        cols = np.any(alpha > threshold, axis=0)

        # Find the bounding box
        top, bottom = np.where(rows)[0][[0, -1]]
        left, right = np.where(cols)[0][[0, -1]]

        if left < right and top < bottom:
            return (left, top, right, bottom)
        else:
            return None

    def position_logic(self, image_path, canvas_size, padding_top, padding_right, padding_bottom, padding_left, use_threshold=True):
        print('masuk ke method position_logic')
        image = Image.open(image_path)
        image = image.convert("RGBA")
        print('image converted to RGBA')

        # Get the bounding box of the non-blank area with threshold
        if use_threshold:
            bbox = self.get_bounding_box_with_threshold(image, threshold=10)
        else:
            bbox = image.getbbox()
        log = []

        if bbox:
            # Check 1 pixel around the image for non-transparent pixels
            width, height = image.size
            cropped_sides = []

            # Define tolerance for transparency
            tolerance = 30  # Adjust this value as needed

            # Check top edge
            if any(image.getpixel((x, 0))[3] > tolerance for x in range(width)):
                cropped_sides.append("top")

            # Check bottom edge
            if any(image.getpixel((x, height - 1))[3] > tolerance for x in range(width)):
                cropped_sides.append("bottom")

            # Check left edge
            if any(image.getpixel((0, y))[3] > tolerance for y in range(height)):
                cropped_sides.append("left")

            # Check right edge
            if any(image.getpixel((width - 1, y))[3] > tolerance for y in range(height)):
                cropped_sides.append("right")

            if cropped_sides:
                info_message = f"Info for {os.path.basename(image_path)}: The following sides of the image may contain cropped objects: {', '.join(cropped_sides)}"
                print(info_message)
                log.append({"info": info_message})
            else:
                info_message = f"Info for {os.path.basename(image_path)}: The image is not cropped."
                print(info_message)
                print("ini nih cropped side",cropped_sides)
                log.append({"info": info_message})

            # Crop the image to the bounding box
            image = image.crop(bbox)
            log.append({"action": "crop", "bbox": [str(bbox[0]), str(bbox[1]), str(bbox[2]), str(bbox[3])]})

            # Calculate the new size to expand the image
            target_width, target_height = canvas_size
            aspect_ratio = image.width / image.height

            if len(cropped_sides) == 4:
                # If the image is cropped on all sides, center crop it to fit the canvas
                if aspect_ratio > 1:  # Landscape
                    new_height = target_height
                    new_width = int(new_height * aspect_ratio)
                    left = (new_width - target_width) // 2
                    image = image.resize((new_width, new_height), Image.LANCZOS)
                    image = image.crop((left, 0, left + target_width, target_height))
                else:  # Portrait or square
                    new_width = target_width
                    new_height = int(new_width / aspect_ratio)
                    top = (new_height - target_height) // 2
                    image = image.resize((new_width, new_height), Image.LANCZOS)
                    image = image.crop((0, top, target_width, top + target_height))
                log.append({"action": "center_crop_resize", "new_size": f"{target_width}x{target_height}"})
                x, y = 0, 0
                print(cropped_sides)
            elif not cropped_sides:
                # If the image is not cropped, expand it from center until it touches the padding
                new_height = target_height - padding_top - padding_bottom
                new_width = int(new_height * aspect_ratio)

                if new_width > target_width - padding_left - padding_right:
                    # If width exceeds available space, adjust based on width
                    new_width = target_width - padding_left - padding_right
                    new_height = int(new_width / aspect_ratio)

                # Resize the image
                image = image.resize((new_width, new_height), Image.LANCZOS)
                log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})

                x = (target_width - new_width) // 2
                y = target_height - new_height - padding_bottom
            else:
                # Logic for handling cropped images
                new_height = target_height - padding_bottom
                new_width = int(new_height * aspect_ratio)

                # If new width exceeds canvas width, adjust based on width
                if new_width > target_width:
                    new_width = target_width
                    new_height = int(new_width / aspect_ratio)

                # Resize the image
                image = image.resize((new_width, new_height), Image.LANCZOS)
                log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})

                # Set position
                if "left" in cropped_sides:
                    x = 0
                else:
                    x = target_width - new_width
                y = 0

        return log, image, x, y

    def process_single_image(self, image_path, output_folder, bg_method, canvas_size_name, output_format, bg_choice, custom_color, watermark_path=None):
        print('masuk ke method process_single_image')
        add_padding_line = False

        if canvas_size_name == 'Rox':
            canvas_size = (1080, 1080)
            padding_top = 112
            padding_right = 125
            padding_bottom = 116
            padding_left = 125
        elif canvas_size_name == 'Columbia':
            canvas_size = (730, 610)
            padding_top = 30
            padding_right = 105
            padding_bottom = 35
            padding_left = 105
        elif canvas_size_name == 'Zalora':
            canvas_size = (763, 1100)
            padding_top = 50
            padding_right = 50
            padding_bottom = 200
            padding_left = 50


        filename = os.path.basename(image_path)
        try:
            print(f"Processing image: {filename}")
            if bg_method == 'rembg':
                image_with_no_bg = self.model_loader.remove_background_rembg(image_path)
            elif bg_method == 'bria':
                image_with_no_bg = self.model_loader.remove_background_bria(image_path, self.bria_pipeline)
            elif bg_method == None:
                image_with_no_bg = Image.open(image_path)

            temp_image_path = os.path.join(output_folder, f"temp_{filename}")
            image_with_no_bg.save(temp_image_path, format='PNG')

            log, new_image, x, y = self.position_logic(temp_image_path, canvas_size, padding_top, padding_right, padding_bottom, padding_left)

            # Create a new canvas with the appropriate background
            if bg_choice == 'white':
                canvas = Image.new("RGBA", canvas_size, "WHITE")
            elif bg_choice == 'custom':
                canvas = Image.new("RGBA", canvas_size, custom_color)
            else:  # transparent
                canvas = Image.new("RGBA", canvas_size, (0, 0, 0, 0))

            # Paste the resized image onto the canvas
            canvas.paste(new_image, (x, y), new_image)
            log.append({"action": "paste", "position": [str(x), str(y)]})

            # Add visible black line for padding when background is not transparent
            if add_padding_line:
                draw = ImageDraw.Draw(canvas)
                draw.rectangle([padding_left, padding_top, canvas_size[0] - padding_right, canvas_size[1] - padding_bottom], outline="black", width=5)
                log.append({"action": "add_padding_line"})

            output_ext = 'jpg' if output_format == 'JPG' else 'png'
            output_filename = f"{os.path.splitext(filename)[0]}.{output_ext}"
            output_path = os.path.join(output_folder, output_filename)

            # Apply watermark only if the filename ends with "_01" and watermark_path is provided
            if os.path.splitext(filename)[0].endswith("_01") and watermark_path:
                watermark = Image.open(watermark_path).convert("RGBA")
                canvas = canvas.convert("RGBA")
                canvas.paste(watermark, (0, 0), watermark)
                log.append({"action": "add_watermark"})

            if output_format == 'JPG':
                canvas = canvas.convert('RGB')
                canvas.save(output_path, format='JPEG')
            else:
                canvas.save(output_path, format='PNG')

            os.remove(temp_image_path)

            print(f"Processed image path: {output_path}")
            return [(output_path, image_path)], log

        except Exception as e:
            print(f"Error processing {filename}: {e}")
            return None, None

    def remove_extension(self, filename):
        # Regular expression to match any extension at the end of the string
        return re.sub(r'\.[^.]+$', '', filename)

    def process_images(self, input_files, bg_method='rembg', watermark_path=None, canvas_size='Rox', output_format='PNG', bg_choice='transparent', custom_color="#ffffff", num_workers=4, progress=gr.Progress()):
        print('masuk ke method process_images')
        start_time = time.time()

        output_folder = "processed_images"
        if os.path.exists(output_folder):
            shutil.rmtree(output_folder)
        os.makedirs(output_folder)

        processed_images = []
        original_images = []
        all_logs = []

        if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')):
            # Handle zip file
            input_folder = "temp_input"
            if os.path.exists(input_folder):
                shutil.rmtree(input_folder)
            os.makedirs(input_folder)

            try:
                with zipfile.ZipFile(input_files, 'r') as zip_ref:
                    zip_ref.extractall(input_folder)
            except zipfile.BadZipFile as e:
                print(f"Error extracting zip file: {e}")
                return [], None, 0

            image_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif', '.webp'))]
        elif isinstance(input_files, list):
            # Handle multiple files
            image_files = input_files
        else:
            # Handle single file
            image_files = [input_files]

        total_images = len(image_files)
        print(f"Total images to process: {total_images}")

        avg_processing_time = 0
        with ThreadPoolExecutor(max_workers=num_workers) as executor:
            future_to_image = {executor.submit(self.process_single_image, image_path, output_folder, bg_method, canvas_size, output_format, bg_choice, custom_color, watermark_path): image_path for image_path in image_files}
            for idx, future in enumerate(future_to_image):
                try:
                    start_time_image = time.time()
                    result, log = future.result()
                    end_time_image = time.time()
                    image_processing_time = end_time_image - start_time_image

                    # Update average processing time
                    avg_processing_time = (avg_processing_time * idx + image_processing_time) / (idx + 1)
                    if result:
                        if watermark_path:
                            get_name = future_to_image[future].split('/')
                            get_name = self.remove_extension(get_name[len(get_name)-1])
                            twibbon_input = f'{get_name}.png' if output_format == 'PNG' else f'{get_name}.jpg'
                            twibbon_output_path = os.path.join(output_folder, f'result_{start_time_image}.png')
                            print('mencoba method add twibon')
                            self.add_twibbon(f'processed_images/{twibbon_input}', watermark_path, twibbon_output_path)
                            print('method add_twibon berhasil')
                            processed_images.append((twibbon_output_path, twibbon_output_path))
                        else:
                            processed_images.extend(result)
                        original_images.append(future_to_image[future])
                        all_logs.append({os.path.basename(future_to_image[future]): log})

                    # Estimate remaining time
                    remaining_images = total_images - (idx + 1)
                    estimated_remaining_time = remaining_images * avg_processing_time

                    progress((idx + 1) / total_images, f"{idx + 1}/{total_images} images processed. Estimated time remaining: {estimated_remaining_time:.2f} seconds")
                except Exception as e:
                    print('HAYOLOH KETAUAN ERRORNYA')
                    print(f"Error processing image {future_to_image[future]}: {e}")

        output_zip_path = "processed_images.zip"
        with zipfile.ZipFile(output_zip_path, 'w') as zipf:
            for file, _ in processed_images:
                zipf.write(file, os.path.basename(file))

        # Write the comprehensive log for all images
        with open(os.path.join(output_folder, 'process_log.json'), 'w') as log_file:
            json.dump(all_logs, log_file, indent=4)
        print("Comprehensive log saved to", os.path.join(output_folder, 'process_log.json'))

        end_time = time.time()
        processing_time = end_time - start_time
        print(f"Processing time: {processing_time} seconds")
        return original_images, processed_images, output_zip_path, processing_time

    def remove_white_background(self, twibbon, tolerance=100):
        """
        Menghapus background putih dengan toleransi tertentu.
        tolerance: Nilai antara 0 (tidak toleran, hanya putih murni) hingga 255 (sangat toleran, mencakup hampir semua warna cerah).
        """
        twibbon = twibbon.convert("RGBA")
        data = twibbon.getdata()

        new_data = []
        for item in data:
            # Hitung jarak warna ke putih (255, 255, 255)
            distance_to_white = sum([abs(255 - c) for c in item[:3]])  # RGB distance

            if distance_to_white <= tolerance:
                # Jika jarak warna ke putih lebih kecil dari toleransi, buat transparan
                new_data.append((255, 255, 255, 0))  # Transparan penuh
            else:
                # Tetap pertahankan warna asli
                new_data.append(item)

        twibbon.putdata(new_data)
        return twibbon

    def adjust_opacity(self, twibbon, opacity_level):
        twibbon = twibbon.convert("RGBA")
        data = twibbon.getdata()

        new_data = []
        for item in data:
            # Ubah hanya nilai alpha (transparansi)
            new_alpha = int(item[3] * opacity_level / 255)  # Sesuaikan alpha sesuai opacity_level
            new_data.append((item[0], item[1], item[2], new_alpha))

        twibbon.putdata(new_data)
        return twibbon


    def add_twibbon(self, image_path, twibbon_path, output_path):
        # Open the original image
        image = Image.open(image_path).convert("RGBA")
        print('Original image loaded')

        # Open the twibbon (watermark)
        twibbon = Image.open(twibbon_path).convert("RGBA")
        print('Twibbon (watermark) loaded')

        # Remove white background from twibbon
        twibbon = self.remove_white_background(twibbon)
        # twibbon = self.adjust_opacity(twibbon, 128)

        # Resize the twibbon (watermark)
        image_width, image_height = image.size
        twibbon_size = (image_width // 5, image_height // 5)  # Resize twibbon to 20% of image size
        twibbon = twibbon.resize(twibbon_size, Image.Resampling.LANCZOS)

        # Center the watermark
        twibbon_width, twibbon_height = twibbon.size
        x_offset = (image_width - twibbon_width) // 2
        y_offset = (image_height - twibbon_height) // 2

        # Create a new transparent layer for the watermark
        transparent_layer = Image.new("RGBA", (image_width, image_height), (0, 0, 0, 0))
        transparent_layer.paste(twibbon, (x_offset, y_offset), mask=twibbon.split()[3])

        # Composite the image with the transparent layer
        final_image = Image.alpha_composite(image, transparent_layer)

        # Save the final result
        print('Saving the final image with watermark...')
        final_image.save(output_path)
        print('Image saved successfully')

        return final_image

class ModelInference:
  def __init__(self):
      self.loader = LoadModel()
      self.sd_model = self.loader.get_stable_diffusion_model()

  def text_to_image(self, prompt):
      os.makedirs("generated_images", exist_ok=True)  # Ensure the directory exists
      image = self.sd_model(prompt).images[0]  # Generate image using the model
      # Create a sanitized filename by replacing spaces with underscores
      image_path = f"generated_images/{prompt.replace(' ', '_')}.png"
      image.save(image_path)  # Save the generated image
      return image, image_path  # Return the image and its path

  # Function to modify an image based on a text prompt
  def text_image_to_image(self, input_image, prompt):
      os.makedirs("generated_images", exist_ok=True)  # Ensure the directory exists
      # Convert input image to PIL Image if necessary
      if not isinstance(input_image, Image.Image):
          input_image = Image.open(input_image)  # Load image from path if given as string
      # Generate modified image using the model with the input image and prompt
      modified_image = self.sd_model(prompt, init_image=input_image, strength=0.75).images[0]
      # Create a sanitized filename for the modified image
      image_path = f"generated_images/{prompt.replace(' ', '_')}_modified.png"
      modified_image.save(image_path)  # Save the modified image
      return modified_image, image_path  # Return the modified image and its path

class CreativeImageSuite:
    def __init__(self):
        self.inference = ModelInference()  # Use the ModelInference class
        self.processor = ImageProcessor()
        self.theme = "NoCrypt/[email protected]"
        self.title = "# 🎨 Creative Image Suite: Generate, Modify, and Enhance Your Visuals"
        self.description = """
        **Unlock your creativity with our comprehensive image processing tool! This suite offers three powerful features:**
        1. **✏️ Text to Image**: Transform your ideas into stunning visuals by simply entering a descriptive text prompt.
        2. **🖼️ Image to Image**: Enhance existing images by providing a text description of the modifications you want.
        3. **🖌️ Image Background Removal and Resizing**: Effortlessly remove backgrounds from images, resize them, and even add watermarks (optional).
        """
        self.interface = None

    def gradio_interface(self, input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers):
        progress = gr.Progress()
        watermark_path = watermark.name if watermark else None

        # Check input_files, is it single image, list image, or zip/rar
        if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')):
                return self.processor.process_images(input_files, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress)
        elif isinstance(input_files, list):
            return self.processor.process_images(input_files, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress)
        else:
            return self.processor.process_images(input_files.name, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress)

    def show_color_picker(self, bg_choice):
        if bg_choice == 'custom':
          return gr.update(visible=True)

        return gr.update(visible=False)

    def update_compare(self, evt: gr.SelectData):
        if isinstance(evt.value, dict) and 'caption' in evt.value:
            input_path = evt.value['caption']
            output_path = evt.value['image']['path']
            input_path = input_path.split("Input: ")[-1]
            # Open the original and processed images
            original_img = Image.open(input_path)
            processed_img = Image.open(output_path)

            # Calculate the aspect ratios
            original_ratio = f"{original_img.width}x{original_img.height}"
            processed_ratio = f"{processed_img.width}x{processed_img.height}"

            return gr.update(value=input_path), gr.update(value=output_path), gr.update(value=original_ratio), gr.update(value=processed_ratio)
        else:
            print("No caption found in selection")
            return gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)

    def master_process(self, input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers):
        _, processed_images, zip_path, time_taken = self.gradio_interface(input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers)
        processed_images_with_captions = [(img, f"Input: {caption}") for img, caption in processed_images]
        return processed_images_with_captions, zip_path, f"{time_taken:.2f} seconds"

    def build_interface(self):
        with gr.Blocks(theme=self.theme) as self.interface:
            # App Header
            gr.Markdown(self.title)
            gr.Markdown(self.description)

            # Text-to-Image Section
            gr.Markdown("## Text to Image Feature")
            gr.Markdown("""
            *Create Visuals from Your Imagination*

            This feature allows you to generate unique images from a simple text description. Just type your idea in the box, and our tool will bring it to life in seconds.  
            - Example Prompts:
                - "Generate an image of a kitchenset with modern furniture."
                - "Generate an image of a casual turtleneck shirt."
                - "A futuristic laptop on a white background ."
            """)
            with gr.Row():
                prompt_input = gr.Textbox(label="Describe your vision to generate a unique image:")
                generate_button = gr.Button("Create Image")
                output_image = gr.Image(label="Your Generated Image")
                download_button = gr.File(label="Download Image", type="filepath")

                generate_button.click(self.inference.text_to_image,
                                      inputs=prompt_input,
                                      outputs=[output_image, download_button])

            # Image-to-Image Section
            gr.Markdown("## Image to Image Feature")
            gr.Markdown("""
            *Enhance or Transform Your Existing Images*

            Upload an image and describe the changes you'd like to see. From subtle edits to artistic transformations, this feature helps you bring new life to your visuals.  
            - Example Edits:
                - "Change the Color of the bag"
                - "Add plastic to the suitcase."
                - "mirror this photo of denim jacket."
            """)
            with gr.Row():
                input_image = gr.Image(label="Upload an image to modify:", type="pil")
                prompt_modification = gr.Textbox(label="Describe the changes you want:")
                modify_button = gr.Button("Apply Changes")
                modified_output_image = gr.Image(label="Your Modified Image")
                download_modified_button = gr.File(label="Download Modified Image", type="filepath")

                modify_button.click(self.inference.text_image_to_image,
                                    inputs=[input_image, prompt_modification],
                                    outputs=[modified_output_image, download_modified_button])

            # Background Removal and Resizing Section
            gr.Markdown("## Image Background Removal and Resizing with Optional Watermark")
            gr.Markdown("""
            *Perfect Your Images for Any Use Case*

            Easily remove backgrounds, resize images to fit your needs, and even add watermarks to maintain originality or branding. This feature is ideal for e-commerce, social media, and design projects.  
            - Features:
                - Supports batch processing of multiple images or ZIP/RAR files.
                - Options for transparent, solid color, or custom backgrounds.
                - Output in your choice of PNG or JPG format.
            """)
            with gr.Row():
                input_files = gr.File(label="Upload an image or a ZIP/RAR file for batch processing:", file_types=[".zip", ".rar", "image"], interactive=True)
                watermark = gr.File(label="Upload an optional watermark (PNG only):", file_types=[".png"])

            with gr.Row():
                canvas_size = gr.Radio(choices=["Rox", "Columbia", "Zalora"], label="Select the desired canvas size:", value="Rox")
                output_format = gr.Radio(choices=["PNG", "JPG"], label="Choose the output format:", value="JPG")
                num_workers = gr.Slider(minimum=1, maximum=16, step=1, label="Set the number of processing threads:", value=5)

            with gr.Row():
                bg_method = gr.Radio(choices=["bria", "rembg", None], label="Choose a background removal method:", value="bria")
                bg_choice = gr.Radio(choices=["transparent", "white", "custom"], label="Select a background style:", value="white")
                custom_color = gr.ColorPicker(label="Pick a custom background color (if applicable):", value="#ffffff", visible=False)

            process_button = gr.Button("Start Processing")
            with gr.Row():
                gallery_processed = gr.Gallery(label="Processed Images")
            with gr.Row():
                image_original = gr.Image(label="Original Image Preview", interactive=False)
                image_processed = gr.Image(label="Processed Image Preview", interactive=False)
            with gr.Row():
                original_ratio = gr.Textbox(label="Aspect Ratio (Original)")
                processed_ratio = gr.Textbox(label="Aspect Ratio (Processed)")
            with gr.Row():
                output_zip = gr.File(label="Download All Processed Images (ZIP)")
                processing_time = gr.Textbox(label="Total Processing Time (seconds)")

            bg_choice.change(self.show_color_picker, inputs=bg_choice, outputs=custom_color)
            process_button.click(self.master_process, inputs=[input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers],
                                 outputs=[gallery_processed, output_zip, processing_time])
            gallery_processed.select(self.update_compare, outputs=[image_original, image_processed, original_ratio, processed_ratio])

    def launch(self):
        if self.interface is None:
            self.build_interface()
        self.interface.launch(share=True, debug=True)

app = CreativeImageSuite()
app.launch()