File size: 29,378 Bytes
8af436a 54e2641 8af436a 54e2641 8af436a 54e2641 8af436a 54e2641 8af436a 54e2641 8af436a 54e2641 8af436a 54e2641 8af436a 54e2641 8af436a 54e2641 8af436a 54e2641 8af436a 54e2641 8af436a 54e2641 8af436a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
import os, re
import zipfile
import shutil
import time
from PIL import Image, ImageDraw, ImageFont
import io
from rembg import remove
import gradio as gr
from concurrent.futures import ThreadPoolExecutor
from diffusers import StableDiffusionPipeline
from transformers import pipeline
import numpy as np
import json
import torch
class LoadModel:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
def get_stable_diffusion_model(self):
return StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float32).to(self.device)
def get_bria_model(self):
return pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True, device=self.device)
def remove_background_bria(self, input_path, pipeline):
print(f"Removing background using bria for image: {input_path}")
result = pipeline(input_path)
return result
def remove_background_rembg(self, input_path):
print(f"Removing background using rembg for image: {input_path}")
with open(input_path, 'rb') as i:
input_image = i.read()
output_image = remove(input_image)
img = Image.open(io.BytesIO(output_image)).convert("RGBA")
return img
class ImageProcessor:
def __init__(self):
self.model_loader = LoadModel()
self.bria_pipeline = self.model_loader.get_bria_model()
def get_bounding_box_with_threshold(self, image, threshold):
# Convert image to numpy array
img_array = np.array(image)
# Get alpha channel
alpha = img_array[:, :, 3]
# Find rows and columns where alpha > threshold
rows = np.any(alpha > threshold, axis=1)
cols = np.any(alpha > threshold, axis=0)
# Find the bounding box
top, bottom = np.where(rows)[0][[0, -1]]
left, right = np.where(cols)[0][[0, -1]]
if left < right and top < bottom:
return (left, top, right, bottom)
else:
return None
def position_logic(self, image_path, canvas_size, padding_top, padding_right, padding_bottom, padding_left, use_threshold=True):
print('masuk ke method position_logic')
image = Image.open(image_path)
image = image.convert("RGBA")
print('image converted to RGBA')
# Get the bounding box of the non-blank area with threshold
if use_threshold:
bbox = self.get_bounding_box_with_threshold(image, threshold=10)
else:
bbox = image.getbbox()
log = []
if bbox:
# Check 1 pixel around the image for non-transparent pixels
width, height = image.size
cropped_sides = []
# Define tolerance for transparency
tolerance = 30 # Adjust this value as needed
# Check top edge
if any(image.getpixel((x, 0))[3] > tolerance for x in range(width)):
cropped_sides.append("top")
# Check bottom edge
if any(image.getpixel((x, height - 1))[3] > tolerance for x in range(width)):
cropped_sides.append("bottom")
# Check left edge
if any(image.getpixel((0, y))[3] > tolerance for y in range(height)):
cropped_sides.append("left")
# Check right edge
if any(image.getpixel((width - 1, y))[3] > tolerance for y in range(height)):
cropped_sides.append("right")
if cropped_sides:
info_message = f"Info for {os.path.basename(image_path)}: The following sides of the image may contain cropped objects: {', '.join(cropped_sides)}"
print(info_message)
log.append({"info": info_message})
else:
info_message = f"Info for {os.path.basename(image_path)}: The image is not cropped."
print(info_message)
print("ini nih cropped side",cropped_sides)
log.append({"info": info_message})
# Crop the image to the bounding box
image = image.crop(bbox)
log.append({"action": "crop", "bbox": [str(bbox[0]), str(bbox[1]), str(bbox[2]), str(bbox[3])]})
# Calculate the new size to expand the image
target_width, target_height = canvas_size
aspect_ratio = image.width / image.height
if len(cropped_sides) == 4:
# If the image is cropped on all sides, center crop it to fit the canvas
if aspect_ratio > 1: # Landscape
new_height = target_height
new_width = int(new_height * aspect_ratio)
left = (new_width - target_width) // 2
image = image.resize((new_width, new_height), Image.LANCZOS)
image = image.crop((left, 0, left + target_width, target_height))
else: # Portrait or square
new_width = target_width
new_height = int(new_width / aspect_ratio)
top = (new_height - target_height) // 2
image = image.resize((new_width, new_height), Image.LANCZOS)
image = image.crop((0, top, target_width, top + target_height))
log.append({"action": "center_crop_resize", "new_size": f"{target_width}x{target_height}"})
x, y = 0, 0
print(cropped_sides)
elif not cropped_sides:
# If the image is not cropped, expand it from center until it touches the padding
new_height = target_height - padding_top - padding_bottom
new_width = int(new_height * aspect_ratio)
if new_width > target_width - padding_left - padding_right:
# If width exceeds available space, adjust based on width
new_width = target_width - padding_left - padding_right
new_height = int(new_width / aspect_ratio)
# Resize the image
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
x = (target_width - new_width) // 2
y = target_height - new_height - padding_bottom
else:
# Logic for handling cropped images
new_height = target_height - padding_bottom
new_width = int(new_height * aspect_ratio)
# If new width exceeds canvas width, adjust based on width
if new_width > target_width:
new_width = target_width
new_height = int(new_width / aspect_ratio)
# Resize the image
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
# Set position
if "left" in cropped_sides:
x = 0
else:
x = target_width - new_width
y = 0
return log, image, x, y
def process_single_image(self, image_path, output_folder, bg_method, canvas_size_name, output_format, bg_choice, custom_color, watermark_path=None):
print('masuk ke method process_single_image')
add_padding_line = False
if canvas_size_name == 'Rox':
canvas_size = (1080, 1080)
padding_top = 112
padding_right = 125
padding_bottom = 116
padding_left = 125
elif canvas_size_name == 'Columbia':
canvas_size = (730, 610)
padding_top = 30
padding_right = 105
padding_bottom = 35
padding_left = 105
elif canvas_size_name == 'Zalora':
canvas_size = (763, 1100)
padding_top = 50
padding_right = 50
padding_bottom = 200
padding_left = 50
filename = os.path.basename(image_path)
try:
print(f"Processing image: {filename}")
if bg_method == 'rembg':
image_with_no_bg = self.model_loader.remove_background_rembg(image_path)
elif bg_method == 'bria':
image_with_no_bg = self.model_loader.remove_background_bria(image_path, self.bria_pipeline)
elif bg_method == None:
image_with_no_bg = Image.open(image_path)
temp_image_path = os.path.join(output_folder, f"temp_{filename}")
image_with_no_bg.save(temp_image_path, format='PNG')
log, new_image, x, y = self.position_logic(temp_image_path, canvas_size, padding_top, padding_right, padding_bottom, padding_left)
# Create a new canvas with the appropriate background
if bg_choice == 'white':
canvas = Image.new("RGBA", canvas_size, "WHITE")
elif bg_choice == 'custom':
canvas = Image.new("RGBA", canvas_size, custom_color)
else: # transparent
canvas = Image.new("RGBA", canvas_size, (0, 0, 0, 0))
# Paste the resized image onto the canvas
canvas.paste(new_image, (x, y), new_image)
log.append({"action": "paste", "position": [str(x), str(y)]})
# Add visible black line for padding when background is not transparent
if add_padding_line:
draw = ImageDraw.Draw(canvas)
draw.rectangle([padding_left, padding_top, canvas_size[0] - padding_right, canvas_size[1] - padding_bottom], outline="black", width=5)
log.append({"action": "add_padding_line"})
output_ext = 'jpg' if output_format == 'JPG' else 'png'
output_filename = f"{os.path.splitext(filename)[0]}.{output_ext}"
output_path = os.path.join(output_folder, output_filename)
# Apply watermark only if the filename ends with "_01" and watermark_path is provided
if os.path.splitext(filename)[0].endswith("_01") and watermark_path:
watermark = Image.open(watermark_path).convert("RGBA")
canvas = canvas.convert("RGBA")
canvas.paste(watermark, (0, 0), watermark)
log.append({"action": "add_watermark"})
if output_format == 'JPG':
canvas = canvas.convert('RGB')
canvas.save(output_path, format='JPEG')
else:
canvas.save(output_path, format='PNG')
os.remove(temp_image_path)
print(f"Processed image path: {output_path}")
return [(output_path, image_path)], log
except Exception as e:
print(f"Error processing {filename}: {e}")
return None, None
def remove_extension(self, filename):
# Regular expression to match any extension at the end of the string
return re.sub(r'\.[^.]+$', '', filename)
def process_images(self, input_files, bg_method='rembg', watermark_path=None, canvas_size='Rox', output_format='PNG', bg_choice='transparent', custom_color="#ffffff", num_workers=4, progress=gr.Progress()):
print('masuk ke method process_images')
start_time = time.time()
output_folder = "processed_images"
if os.path.exists(output_folder):
shutil.rmtree(output_folder)
os.makedirs(output_folder)
processed_images = []
original_images = []
all_logs = []
if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')):
# Handle zip file
input_folder = "temp_input"
if os.path.exists(input_folder):
shutil.rmtree(input_folder)
os.makedirs(input_folder)
try:
with zipfile.ZipFile(input_files, 'r') as zip_ref:
zip_ref.extractall(input_folder)
except zipfile.BadZipFile as e:
print(f"Error extracting zip file: {e}")
return [], None, 0
image_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif', '.webp'))]
elif isinstance(input_files, list):
# Handle multiple files
image_files = input_files
else:
# Handle single file
image_files = [input_files]
total_images = len(image_files)
print(f"Total images to process: {total_images}")
avg_processing_time = 0
with ThreadPoolExecutor(max_workers=num_workers) as executor:
future_to_image = {executor.submit(self.process_single_image, image_path, output_folder, bg_method, canvas_size, output_format, bg_choice, custom_color, watermark_path): image_path for image_path in image_files}
for idx, future in enumerate(future_to_image):
try:
start_time_image = time.time()
result, log = future.result()
end_time_image = time.time()
image_processing_time = end_time_image - start_time_image
# Update average processing time
avg_processing_time = (avg_processing_time * idx + image_processing_time) / (idx + 1)
if result:
if watermark_path:
get_name = future_to_image[future].split('/')
get_name = self.remove_extension(get_name[len(get_name)-1])
twibbon_input = f'{get_name}.png' if output_format == 'PNG' else f'{get_name}.jpg'
twibbon_output_path = os.path.join(output_folder, f'result_{start_time_image}.png')
print('mencoba method add twibon')
self.add_twibbon(f'processed_images/{twibbon_input}', watermark_path, twibbon_output_path)
print('method add_twibon berhasil')
processed_images.append((twibbon_output_path, twibbon_output_path))
else:
processed_images.extend(result)
original_images.append(future_to_image[future])
all_logs.append({os.path.basename(future_to_image[future]): log})
# Estimate remaining time
remaining_images = total_images - (idx + 1)
estimated_remaining_time = remaining_images * avg_processing_time
progress((idx + 1) / total_images, f"{idx + 1}/{total_images} images processed. Estimated time remaining: {estimated_remaining_time:.2f} seconds")
except Exception as e:
print('HAYOLOH KETAUAN ERRORNYA')
print(f"Error processing image {future_to_image[future]}: {e}")
output_zip_path = "processed_images.zip"
with zipfile.ZipFile(output_zip_path, 'w') as zipf:
for file, _ in processed_images:
zipf.write(file, os.path.basename(file))
# Write the comprehensive log for all images
with open(os.path.join(output_folder, 'process_log.json'), 'w') as log_file:
json.dump(all_logs, log_file, indent=4)
print("Comprehensive log saved to", os.path.join(output_folder, 'process_log.json'))
end_time = time.time()
processing_time = end_time - start_time
print(f"Processing time: {processing_time} seconds")
return original_images, processed_images, output_zip_path, processing_time
def remove_white_background(self, twibbon, tolerance=100):
"""
Menghapus background putih dengan toleransi tertentu.
tolerance: Nilai antara 0 (tidak toleran, hanya putih murni) hingga 255 (sangat toleran, mencakup hampir semua warna cerah).
"""
twibbon = twibbon.convert("RGBA")
data = twibbon.getdata()
new_data = []
for item in data:
# Hitung jarak warna ke putih (255, 255, 255)
distance_to_white = sum([abs(255 - c) for c in item[:3]]) # RGB distance
if distance_to_white <= tolerance:
# Jika jarak warna ke putih lebih kecil dari toleransi, buat transparan
new_data.append((255, 255, 255, 0)) # Transparan penuh
else:
# Tetap pertahankan warna asli
new_data.append(item)
twibbon.putdata(new_data)
return twibbon
def adjust_opacity(self, twibbon, opacity_level):
twibbon = twibbon.convert("RGBA")
data = twibbon.getdata()
new_data = []
for item in data:
# Ubah hanya nilai alpha (transparansi)
new_alpha = int(item[3] * opacity_level / 255) # Sesuaikan alpha sesuai opacity_level
new_data.append((item[0], item[1], item[2], new_alpha))
twibbon.putdata(new_data)
return twibbon
def add_twibbon(self, image_path, twibbon_path, output_path):
# Open the original image
image = Image.open(image_path).convert("RGBA")
print('Original image loaded')
# Open the twibbon (watermark)
twibbon = Image.open(twibbon_path).convert("RGBA")
print('Twibbon (watermark) loaded')
# Remove white background from twibbon
twibbon = self.remove_white_background(twibbon)
# twibbon = self.adjust_opacity(twibbon, 128)
# Resize the twibbon (watermark)
image_width, image_height = image.size
twibbon_size = (image_width // 5, image_height // 5) # Resize twibbon to 20% of image size
twibbon = twibbon.resize(twibbon_size, Image.Resampling.LANCZOS)
# Center the watermark
twibbon_width, twibbon_height = twibbon.size
x_offset = (image_width - twibbon_width) // 2
y_offset = (image_height - twibbon_height) // 2
# Create a new transparent layer for the watermark
transparent_layer = Image.new("RGBA", (image_width, image_height), (0, 0, 0, 0))
transparent_layer.paste(twibbon, (x_offset, y_offset), mask=twibbon.split()[3])
# Composite the image with the transparent layer
final_image = Image.alpha_composite(image, transparent_layer)
# Save the final result
print('Saving the final image with watermark...')
final_image.save(output_path)
print('Image saved successfully')
return final_image
class ModelInference:
def __init__(self):
self.loader = LoadModel()
self.sd_model = self.loader.get_stable_diffusion_model()
def text_to_image(self, prompt):
os.makedirs("generated_images", exist_ok=True) # Ensure the directory exists
image = self.sd_model(prompt).images[0] # Generate image using the model
# Create a sanitized filename by replacing spaces with underscores
image_path = f"generated_images/{prompt.replace(' ', '_')}.png"
image.save(image_path) # Save the generated image
return image, image_path # Return the image and its path
# Function to modify an image based on a text prompt
def text_image_to_image(self, input_image, prompt):
os.makedirs("generated_images", exist_ok=True) # Ensure the directory exists
# Convert input image to PIL Image if necessary
if not isinstance(input_image, Image.Image):
input_image = Image.open(input_image) # Load image from path if given as string
# Generate modified image using the model with the input image and prompt
modified_image = self.sd_model(prompt, init_image=input_image, strength=0.75).images[0]
# Create a sanitized filename for the modified image
image_path = f"generated_images/{prompt.replace(' ', '_')}_modified.png"
modified_image.save(image_path) # Save the modified image
return modified_image, image_path # Return the modified image and its path
class CreativeImageSuite:
def __init__(self):
self.inference = ModelInference() # Use the ModelInference class
self.processor = ImageProcessor()
self.theme = "NoCrypt/[email protected]"
self.title = "# 🎨 Creative Image Suite: Generate, Modify, and Enhance Your Visuals"
self.description = """
**Unlock your creativity with our comprehensive image processing tool! This suite offers three powerful features:**
1. **✏️ Text to Image**: Transform your ideas into stunning visuals by simply entering a descriptive text prompt.
2. **🖼️ Image to Image**: Enhance existing images by providing a text description of the modifications you want.
3. **🖌️ Image Background Removal and Resizing**: Effortlessly remove backgrounds from images, resize them, and even add watermarks (optional).
"""
self.interface = None
def gradio_interface(self, input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers):
progress = gr.Progress()
watermark_path = watermark.name if watermark else None
# Check input_files, is it single image, list image, or zip/rar
if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')):
return self.processor.process_images(input_files, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress)
elif isinstance(input_files, list):
return self.processor.process_images(input_files, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress)
else:
return self.processor.process_images(input_files.name, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress)
def show_color_picker(self, bg_choice):
if bg_choice == 'custom':
return gr.update(visible=True)
return gr.update(visible=False)
def update_compare(self, evt: gr.SelectData):
if isinstance(evt.value, dict) and 'caption' in evt.value:
input_path = evt.value['caption']
output_path = evt.value['image']['path']
input_path = input_path.split("Input: ")[-1]
# Open the original and processed images
original_img = Image.open(input_path)
processed_img = Image.open(output_path)
# Calculate the aspect ratios
original_ratio = f"{original_img.width}x{original_img.height}"
processed_ratio = f"{processed_img.width}x{processed_img.height}"
return gr.update(value=input_path), gr.update(value=output_path), gr.update(value=original_ratio), gr.update(value=processed_ratio)
else:
print("No caption found in selection")
return gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)
def master_process(self, input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers):
_, processed_images, zip_path, time_taken = self.gradio_interface(input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers)
processed_images_with_captions = [(img, f"Input: {caption}") for img, caption in processed_images]
return processed_images_with_captions, zip_path, f"{time_taken:.2f} seconds"
def build_interface(self):
with gr.Blocks(theme=self.theme) as self.interface:
# App Header
gr.Markdown(self.title)
gr.Markdown(self.description)
# Text-to-Image Section
gr.Markdown("## Text to Image Feature")
gr.Markdown("""
*Create Visuals from Your Imagination*
This feature allows you to generate unique images from a simple text description. Just type your idea in the box, and our tool will bring it to life in seconds.
- Example Prompts:
- "Generate an image of a kitchenset with modern furniture."
- "Generate an image of a casual turtleneck shirt."
- "A futuristic laptop on a white background ."
""")
with gr.Row():
prompt_input = gr.Textbox(label="Describe your vision to generate a unique image:")
generate_button = gr.Button("Create Image")
output_image = gr.Image(label="Your Generated Image")
download_button = gr.File(label="Download Image", type="filepath")
generate_button.click(self.inference.text_to_image,
inputs=prompt_input,
outputs=[output_image, download_button])
# Image-to-Image Section
gr.Markdown("## Image to Image Feature")
gr.Markdown("""
*Enhance or Transform Your Existing Images*
Upload an image and describe the changes you'd like to see. From subtle edits to artistic transformations, this feature helps you bring new life to your visuals.
- Example Edits:
- "Change the Color of the bag"
- "Add plastic to the suitcase."
- "mirror this photo of denim jacket."
""")
with gr.Row():
input_image = gr.Image(label="Upload an image to modify:", type="pil")
prompt_modification = gr.Textbox(label="Describe the changes you want:")
modify_button = gr.Button("Apply Changes")
modified_output_image = gr.Image(label="Your Modified Image")
download_modified_button = gr.File(label="Download Modified Image", type="filepath")
modify_button.click(self.inference.text_image_to_image,
inputs=[input_image, prompt_modification],
outputs=[modified_output_image, download_modified_button])
# Background Removal and Resizing Section
gr.Markdown("## Image Background Removal and Resizing with Optional Watermark")
gr.Markdown("""
*Perfect Your Images for Any Use Case*
Easily remove backgrounds, resize images to fit your needs, and even add watermarks to maintain originality or branding. This feature is ideal for e-commerce, social media, and design projects.
- Features:
- Supports batch processing of multiple images or ZIP/RAR files.
- Options for transparent, solid color, or custom backgrounds.
- Output in your choice of PNG or JPG format.
""")
with gr.Row():
input_files = gr.File(label="Upload an image or a ZIP/RAR file for batch processing:", file_types=[".zip", ".rar", "image"], interactive=True)
watermark = gr.File(label="Upload an optional watermark (PNG only):", file_types=[".png"])
with gr.Row():
canvas_size = gr.Radio(choices=["Rox", "Columbia", "Zalora"], label="Select the desired canvas size:", value="Rox")
output_format = gr.Radio(choices=["PNG", "JPG"], label="Choose the output format:", value="JPG")
num_workers = gr.Slider(minimum=1, maximum=16, step=1, label="Set the number of processing threads:", value=5)
with gr.Row():
bg_method = gr.Radio(choices=["bria", "rembg", None], label="Choose a background removal method:", value="bria")
bg_choice = gr.Radio(choices=["transparent", "white", "custom"], label="Select a background style:", value="white")
custom_color = gr.ColorPicker(label="Pick a custom background color (if applicable):", value="#ffffff", visible=False)
process_button = gr.Button("Start Processing")
with gr.Row():
gallery_processed = gr.Gallery(label="Processed Images")
with gr.Row():
image_original = gr.Image(label="Original Image Preview", interactive=False)
image_processed = gr.Image(label="Processed Image Preview", interactive=False)
with gr.Row():
original_ratio = gr.Textbox(label="Aspect Ratio (Original)")
processed_ratio = gr.Textbox(label="Aspect Ratio (Processed)")
with gr.Row():
output_zip = gr.File(label="Download All Processed Images (ZIP)")
processing_time = gr.Textbox(label="Total Processing Time (seconds)")
bg_choice.change(self.show_color_picker, inputs=bg_choice, outputs=custom_color)
process_button.click(self.master_process, inputs=[input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers],
outputs=[gallery_processed, output_zip, processing_time])
gallery_processed.select(self.update_compare, outputs=[image_original, image_processed, original_ratio, processed_ratio])
def launch(self):
if self.interface is None:
self.build_interface()
self.interface.launch(share=True, debug=True)
app = CreativeImageSuite()
app.launch() |