Spaces:
Sleeping
Sleeping
import os | |
import math | |
import time | |
import inspect | |
from dataclasses import dataclass | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
import tiktoken | |
#1 --- Seema start here | |
class CausalSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
assert config.n_embd % config.n_head == 0 | |
# key, query, value projections for all heads, but in a batch | |
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) | |
# output projection | |
self.c_proj = nn.Linear(config.n_embd, config.n_embd) | |
self.c_proj.NANGPT_SCALE_INIT = 1 | |
# regularization | |
self.n_head = config.n_head | |
self.n_embd = config.n_embd | |
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size)) | |
def forward(self, x): | |
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) | |
# calculate query, key, values for all heads in batch and move head forward to be the batch dim | |
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs | |
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer | |
qkv = self.c_attn(x) | |
q, k, v = qkv.split(self.n_embd, dim=2) | |
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | |
# att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) | |
# att = F.softmax(att, dim=-1) | |
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) | |
y = F.scaled_dot_product_attention(q, k, v, is_causal = True) # Flash attention | |
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side | |
# output projection | |
y = self.c_proj(y) | |
return y | |
class MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) | |
self.gelu = nn.GELU(approximate='tanh') | |
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) | |
self.c_proj.NANOGPT_SCALE_INIT = 1 | |
def forward(self, x): | |
x = self.c_fc(x) | |
x = self.gelu(x) | |
x = self.c_proj(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.ln_1 = nn.LayerNorm(config.n_embd) | |
self.attn = CausalSelfAttention(config) | |
self.ln_2 = nn.LayerNorm(config.n_embd) | |
self.mlp = MLP(config) | |
def forward(self, x): | |
x = x + self.attn(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class GPTConfig: | |
block_size: int = 1024 # max sequence length | |
vocab_size: int = 50304 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token | |
n_layer: int = 12 # number of layers | |
n_head: int = 12 # number of heads | |
n_embd: int = 768 # embedding dimension | |
class GPT(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.transformer = nn.ModuleDict(dict( | |
wte = nn.Embedding(config.vocab_size, config.n_embd), | |
wpe = nn.Embedding(config.block_size, config.n_embd), | |
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
ln_f = nn.LayerNorm(config.n_embd), | |
)) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
# weight sharing | |
self.transformer.wte.weight = self.lm_head.weight | |
# weight initialization | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
std = 0.02 | |
if hasattr(module, 'NANGPT_SCALE_INIT'): | |
std *= (2 * self.config.n_layer) ** -0.5 | |
torch.nn.init.normal_(module.weight, mean = 0.0, std = std) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02) | |
#1 --- Seema end here | |
#============================================================================================================ | |
#2 --- Raja start here | |
def forward(self, idx, targets=None): | |
# idx is of shape (B, T) | |
B, T = idx.size() | |
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" | |
# forward the token and posisition embeddings | |
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T) | |
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd) | |
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd) | |
x = tok_emb + pos_emb | |
# forward the blocks of the transformer | |
for block in self.transformer.h: | |
x = block(x) | |
# forward the final layernorm and the classifier | |
x = self.transformer.ln_f(x) | |
logits = self.lm_head(x) # (B, T, vocab_size) | |
loss = None | |
if targets is not None: | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) | |
return logits, loss | |
def configure_optimizers(self, weight_decay, learning_rate, device_type): | |
# start with all of the candidate parameters (that require grad) | |
param_dict = {pn: p for pn, p in self.named_parameters()} | |
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} | |
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no. | |
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't. | |
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] | |
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] | |
optim_groups = [ | |
{'params': decay_params, 'weight_decay': weight_decay}, | |
{'params': nodecay_params, 'weight_decay': 0.0} | |
] | |
num_decay_params = sum(p.numel() for p in decay_params) | |
num_nodecay_params = sum(p.numel() for p in nodecay_params) | |
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") | |
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") | |
# Create AdamW optimizer and use the fused version if it is available | |
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters | |
use_fused = fused_available and device_type == "cuda" | |
print(f"using fused AdamW: {use_fused}") | |
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused) | |
return optimizer | |
# model = GPT.from_pretrained('gpt2') | |
#2 --- Raja end here | |
#============================================================================================================ | |
#3 --- Yasaswini start here | |
class DataLoaderLite: | |
def __init__(self, B, T, text_input): | |
self.B = B | |
self.T = T | |
self.enc = tiktoken.get_encoding('gpt2') | |
tokens = self.enc.encode(text_input) | |
self.tokens = torch.tensor(tokens) | |
print(f'loaded {len(self.tokens)} tokens') | |
print(f'1 epoch = {len(self.tokens) // (B * T)} batches') | |
# state | |
self.current_position = 0 | |
def next_batch(self): | |
B, T = self.B, self.T | |
buf = self.tokens[self.current_position: self.current_position + B * T + 1] | |
x = (buf[:-1]).view(B, T) # inputs | |
y = (buf[1:]).view(B, T) # targets | |
# advance the position in the tensor | |
self.current_position += B*T | |
# if loading the next batch would be out of bounds, reset | |
if self.current_position + (B * T + 1) > len(self.tokens): | |
self.current_position = 0 | |
return x, y | |
def get_model(device): | |
# CHANGES IN CURRENT CODE | |
torch.set_float32_matmul_precision('high') | |
model = GPT(GPTConfig()) | |
model.to(device) | |
# model = torch.compile(model) | |
return model | |
def get_lr(it): | |
# CODE UPDATE HERE | |
# warmup_steps = 10 | |
# max_steps = 50 | |
warmup_steps = 100 | |
max_lr = 6e-4 | |
min_lr = max_lr * 0.1 | |
if it < warmup_steps: | |
return max_lr * (it + 1) / warmup_steps | |
if it > max_steps: | |
return min_lr | |
decay_ratio = (it - warmup_steps) / (max_steps - warmup_steps) | |
assert 0 <= decay_ratio <=1 | |
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) | |
return min_lr + coeff * (max_lr - min_lr) | |
# optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4, betas=(0.9, 0.95), eps=1e-8) | |
def train_the_model(train_loader): | |
model = get_model(device) | |
optimizer = model.configure_optimizers(weight_decay=0.1, learning_rate=6e-4, device_type=device) | |
for step in range(max_steps): | |
t0 = time.time() | |
x, y = train_loader.next_batch() | |
x, y = x.to(device), y.to(device) | |
optimizer.zero_grad() | |
# NEW CODE ADDED HERE | |
with torch.autocast(device_type=device, dtype=torch.bfloat16): | |
logits, loss = model(x, y) | |
loss.backward() | |
norm = torch.nn.utils.clip_grad_norm(model.parameters(), 1.0) | |
# NEW CODE | |
lr = get_lr(step) | |
for param_group in optimizer.param_groups: | |
param_group['lr'] = lr | |
optimizer.step() | |
torch.cuda.synchronize() | |
t1 = time.time() | |
dt = (t1 - t0) * 1000 | |
tokens_per_sec = (train_loader.B * train_loader.T) / (t1 - t0) | |
print(f'step{step} | loss: {loss.item()} | dt: {dt:.2f}ms | tok/sec: {tokens_per_sec: .2f} | norm: {norm:.2f}') | |
return model, loss | |
#From here inference | |
def infer_the_model(device, test_loader, save1_or_load0, max_length): | |
x, y = test_loader.next_batch() | |
model = get_model(device) | |
if save1_or_load0 == 0: | |
model.load_state_dict(torch.load('model_weights.pth', map_location=torch.device(device))) | |
torch.manual_seed(42) | |
torch.cuda.manual_seed(42) | |
while x.size(1) < max_length: | |
# forward the model to get the logits | |
with torch.no_grad(): | |
logits = model(x)[0] # (B, T, vocab_size) | |
# take the logits at the last position | |
logits = logits[:, -1, :] # (B, vocab_size) | |
# get the probabilities | |
probs = F.softmax(logits, dim=-1) | |
# do top-k sampling of 50 (huggingface pipeline default) | |
# topk_probs here becomes (5, 50), topk_indices is (5, 50) | |
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1) | |
# select a token from the top-k probabilities | |
# note: multinomial does not demand the input to sum to 1 | |
ix = torch.multinomial(topk_probs, 1) # (B, 1) | |
# gather the corresponding indices | |
xcol = torch.gather(topk_indices, -1, ix) # (B, 1) | |
# append to the sequence | |
x = torch.cat((x, xcol), dim=1) | |
# print the generated text | |
retval = "" | |
for i in range(num_return_sequences): | |
tokens = x[i, :max_length].tolist() | |
decoded = test_loader.enc.decode(tokens) | |
print(">", decoded) | |
retval += decoded | |
return retval | |