import torch import RohanGivenCode from RohanGivenCode import * save1_or_load0 = 0 # 1 => Save; 0 => Load device = 'cpu' if torch.cuda.is_available(): device = 'cuda' elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): device = "mps" print(f"using device: {device}") # SEED torch.manual_seed(1337) if torch.cuda.is_available(): torch.cuda.manual_seed(1337) # STOP num_return_sequences = 5 max_length = 30 import gradio as gr def sentence_builder(txt, new_tokens): txt_len = len(txt.split()) if(txt_len < 9): # To make up minumum requirement of 9 words txt += " My lord, I claim your gift, my due by promise" t_loader = DataLoaderLite(B = 8, T = 1, text_input = txt) out = infer_the_model(device, t_loader, save1_or_load0 = 0, max_length = new_tokens) return out demo = gr.Interface( sentence_builder, [ gr.Textbox("", label = "Input", info="Give 8 words atleast, not to get concatenated with default words to make up it's minimum requirement."), gr.Dropdown( ["100", "200", "300", "400", "500", "1000", "2000"], label="New Tokens", info="Choose how many tokens required in output.", value="100" ) ], [ gr.Textbox("", label = "Output") ], title="Shakespeare Drama Dialogue Mimick by GPT3" ) demo.launch(debug=True)