File size: 1,662 Bytes
c2f6a73 55b40d7 41c3c09 fc27a11 c2f6a73 731aa7c 13f3e99 c2f6a73 17bead0 7f52f03 41c3c09 502c1bc eafaa99 502c1bc eafaa99 5ff991e 65f0e8d b4c8f81 65f0e8d b4c8f81 eafaa99 c2f6a73 41c3c09 c2f6a73 17bead0 c2f6a73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import s23_openai_clip
from s23_openai_clip import make_train_valid_dfs
from s23_openai_clip import get_image_embeddings
from s23_openai_clip import inference_CLIP
import gradio as gr
import zipfile
import os
# query_text = "dogs on the grass"
image_path = "./Images"
captions_path = "."
data_source = 'flickr8k.zip'
print("\n\n")
print("Going to unzip dataset")
with zipfile.ZipFile(data_source, 'r') as zip_ref:
zip_ref.extractall('.')
print("unzip of dataset is done")
print("Going to find captions.csv")
find_txt_home = os.system("find /home/user/ -name captions.csv")
find_txt_usr = os.system("find /usr/ -name captions.csv")
print(find_txt_home)
print(find_txt_usr)
#=============================================
import subprocess
# shell command to run
cmd = "ls -l"
output1 = subprocess.check_output(cmd, shell=True).decode("utf-8")
print(output1)
cmd = "ls Images"
output1 = subprocess.check_output(cmd, shell=True).decode("utf-8")
print(output1)
cmd = "pwd"
output1 = subprocess.check_output(cmd, shell=True).decode("utf-8")
print(output1)
#=============================================
print("Going to invoke make_train_valid_dfs")
print("\n\n")
_, valid_df = make_train_valid_dfs()
model, image_embeddings = get_image_embeddings(valid_df, "best.pt")
def greet(query_text):
return inference_CLIP(query_text)
gallery = gr.Gallery(
label="Generated images", show_label=True, elem_id="gallery",
columns=[3], rows=[3], object_fit="contain", height="auto")
# btn = gr.Button("Generate images", scale=0)
demo = gr.Interface(fn=greet, inputs="text",
outputs=gallery)
demo.launch("debug") |