File size: 2,275 Bytes
bc5a689 c2f6a73 55b40d7 41c3c09 fc27a11 c2f6a73 731aa7c 13f3e99 6fb5a33 e1814fe c2f6a73 17bead0 7f52f03 41c3c09 502c1bc eafaa99 502c1bc eafaa99 b4c8f81 3840504 e1814fe 65f0e8d 3840504 65f0e8d b4c8f81 eafaa99 3840504 5c9b0b5 3840504 5c9b0b5 3840504 c2f6a73 3840504 c2f6a73 d05e50a bc5a689 d05e50a ce9108b bc5a689 d05e50a c2f6a73 3840504 41c3c09 c2f6a73 17bead0 d05e50a 17bead0 d05e50a bc5a689 d05e50a 487f990 3840504 c2f6a73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# https://huggingface.co/spaces/raja5259/EraV2S23
# https://github.com/rajayourfriend/EraV2/
# https://github.com/rajayourfriend/EraV2/tree/main/S23
import s23_openai_clip
from s23_openai_clip import make_train_valid_dfs
from s23_openai_clip import get_image_embeddings
from s23_openai_clip import inference_CLIP
import gradio as gr
import zipfile
import os
import pandas as pd
import subprocess
# query_text = "dogs on the grass"
image_path = "./Images"
captions_path = "."
data_source = 'flickr8k.zip'
print("\n\n")
print("Going to unzip dataset")
with zipfile.ZipFile(data_source, 'r') as zip_ref:
zip_ref.extractall('.')
print("unzip of dataset is done")
#=============================================
cmd = "pwd"
output1 = subprocess.check_output(cmd, shell=True).decode("utf-8")
print("result of pwd command")
print(output1) # result => /home/user/app
# shell command to run
cmd = "ls -l"
output1 = subprocess.check_output(cmd, shell=True).decode("utf-8")
print("result of ls -l command")
print(output1)
#=============================================
print("Going to prepare captions.csv")
df = pd.read_csv("captions.txt")
df['id'] = [id_ for id_ in range(df.shape[0] // 5) for _ in range(5)]
df.to_csv("captions.csv", index=False)
df = pd.read_csv("captions.csv")
print("Finished in preparing captions.csv")
print("\n\n")
print("Going to invoke make_train_valid_dfs")
_, valid_df = make_train_valid_dfs()
print("Going to invoke make_train_valid_dfs")
model, image_embeddings = get_image_embeddings(valid_df, "best.pt")
examples1 = ["dogs on the grass",
"parent and kid",
"sunny day",
"ocean",
"a group of people",
"forest",
"ocean"]
def greet(query_text):
print("Going to invoke inference_CLIP")
return inference_CLIP(query_text)
gallery = gr.Gallery(
label="CLIP result images", show_label=True, elem_id="gallery",
columns=[3], rows=[3], object_fit="contain", height="auto")
demo = gr.Interface(fn=greet,
inputs=gr.Dropdown(choices=examples1, label="Search Image by text prompt"),
outputs=gallery,
title="Open AI CLIP")
print("Going to invoke demo.launch")
demo.launch("debug") |