Spaces:
Runtime error
Runtime error
File size: 7,255 Bytes
41bd4da 926a474 41bd4da 926a474 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import os
import math
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.nn.functional as F
from pl_bolts.datamodules import CIFAR10DataModule
from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
from pytorch_lightning import LightningModule, Trainer, seed_everything
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.callbacks.progress import TQDMProgressBar
from pytorch_lightning.loggers import CSVLogger
from torch.optim.lr_scheduler import OneCycleLR
from torch.optim.swa_utils import AveragedModel, update_bn
from torchmetrics.functional import accuracy
from pytorch_lightning.callbacks import ModelCheckpoint
from torchvision import datasets, transforms, utils
from PIL import Image
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
inv_normalize = transforms.Normalize(
mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23],
std=[1/0.23, 1/0.23, 1/0.23]
)
def get_misclassified_data2(model, device, count):
"""
Function to run the model on test set and return misclassified images
:param model: Network Architecture
:param device: CPU/GPU
:param test_loader: DataLoader for test set
"""
PATH_DATASETS = os.environ.get("PATH_DATASETS", ".")
BATCH_SIZE = 256 if torch.cuda.is_available() else 64
NUM_WORKERS = int(os.cpu_count() / 2)
train_transforms = torchvision.transforms.Compose(
[
torchvision.transforms.RandomCrop(32, padding=4),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
cifar10_normalization(),
]
)
test_transforms = torchvision.transforms.Compose(
[
torchvision.transforms.ToTensor(),
cifar10_normalization(),
]
)
cifar10_dm = CIFAR10DataModule(
data_dir=PATH_DATASETS,
batch_size=BATCH_SIZE,
num_workers=NUM_WORKERS,
train_transforms=train_transforms,
test_transforms=test_transforms,
val_transforms=test_transforms,
)
cifar10_dm.prepare_data()
cifar10_dm.setup()
test_loader = cifar10_dm.test_dataloader()
# Prepare the model for evaluation i.e. drop the dropout layer
model.eval()
# List to store misclassified Images
misclassified_data = []
# Reset the gradients
with torch.no_grad():
# Extract images, labels in a batch
for data, target in test_loader:
# Migrate the data to the device
data, target = data.to(device), target.to(device)
# Extract single image, label from the batch
for image, label in zip(data, target):
# Add batch dimension to the image
image = image.unsqueeze(0)
# Get the model prediction on the image
output = model(image)
# Convert the output from one-hot encoding to a value
pred = output.argmax(dim=1, keepdim=True)
# If prediction is incorrect, append the data
if pred != label:
misclassified_data.append((image, label, pred))
if len(misclassified_data) > count :
break
return misclassified_data
# Yes - This is important predecessor2 for gradioMisClass
def display_cifar_misclassified_data(data: list,
classes: list[str],
inv_normalize: transforms.Normalize,
number_of_samples: int = 10):
"""
Function to plot images with labels
:param data: List[Tuple(image, label)]
:param classes: Name of classes in the dataset
:param inv_normalize: Mean and Standard deviation values of the dataset
:param number_of_samples: Number of images to print
"""
fig = plt.figure(figsize=(10, 10))
img = None
x_count = 5
y_count = 1 if number_of_samples <= 5 else math.floor(number_of_samples / x_count)
for i in range(number_of_samples):
plt.subplot(y_count, x_count, i + 1)
img = data[i][0].squeeze().to('cpu')
img = inv_normalize(img)
plt.imshow(np.transpose(img, (1, 2, 0)))
plt.xticks([])
plt.yticks([])
plt.savefig('imshow_output_misclas.png')
return 'imshow_output_misclas.png'
# Plot the misclassified data
def crop_image_pil2(image): #Crop image with 1:1 output aspect ratio
image = Image.fromarray(image)
print("image type = ", type(Image))
width, height = image.size
if width == height:
return image
offset = int(abs(height-width)/2)
if width>height:
image = image.crop([offset,0,width-offset,height])
else:
image = image.crop([0,offset,width,height-offset])
return image
def resize_image_pil2(image, new_width, new_height):
# Convert to PIL image
img = crop_image_pil2(image)
img = Image.fromarray(np.array(img))
# Get original size
width, height = img.size
# Calculate scale
width_scale = new_width / width # RAJA see if this can be deleted
height_scale = new_height / height # RAJA see if this can be deleted
# Resize
# resized = img.resize((int(width*width_scale), int(height*height_scale)), Image.NEAREST)
resized = img.resize((32, 32), Image.NEAREST)
# Crop to exact size
return resized
def classify_images(list_images, model, device):
"""
Function to run the model on test set and return misclassified images
:param model: Network Architecture
:param device: CPU/GPU
:param test_loader: DataLoader for test set
"""
test_transforms = torchvision.transforms.Compose(
[
torchvision.transforms.ToTensor(),
cifar10_normalization(),
]
)
# Prepare the model for evaluation i.e. drop the dropout layer
model.eval()
# List to store misclassified Images
classified_data = []
# Reset the gradients
with torch.no_grad():
# Extract images, labels in a batch
for image in list_images:
#print("image type = ", type(image))
orig_image = image
if(image is None):
pred = 10 #This entry indicates none in classes, empty string
else:
#print("before resize image shape = ", image.shape)
image = resize_image_pil2(image, 32, 32)
image = np.asarray(image)
#print("numpy image dtype = ", image.dtype)
#print("before test_transforms image shape = ", image.shape)
image = test_transforms(image)
#print("after test_transforms image shape = ", image.shape)
image = image.unsqueeze(0)
#print("after squeeze image shape = ", image.shape)
# Get the model prediction on the image
output = model(image)
# Convert the output from one-hot encoding to a value
pred = output.argmax(dim=1, keepdim=True)
classified_data.append((orig_image, pred))
return classified_data |