Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import torchvision | |
from torchvision import datasets, transforms, utils | |
from pl_bolts.datamodules import CIFAR10DataModule | |
from pl_bolts.transforms.dataset_normalizations import cifar10_normalization | |
from pytorch_lightning import LightningModule, Trainer, seed_everything | |
from pytorch_lightning.callbacks import LearningRateMonitor | |
from pytorch_lightning.callbacks.progress import TQDMProgressBar | |
from pytorch_lightning.loggers import CSVLogger | |
from torch.optim.lr_scheduler import OneCycleLR | |
from torch.optim.swa_utils import AveragedModel, update_bn | |
from torchmetrics.functional import accuracy | |
import pandas as pd | |
import torch.nn as nn | |
import torch.nn.functional as F | |
# from IPython.core.display import display | |
import misclas_helper | |
import gradcam_helper | |
import lightningmodel | |
from misclas_helper import display_cifar_misclassified_data | |
from gradcam_helper import display_gradcam_output | |
from misclas_helper import get_misclassified_data2 | |
from misclas_helper import classify_images | |
from lightningmodel import LitResnet | |
#ref : https://pytorch-lightning.readthedocs.io/en/1.2.10/common/weights_loading.html | |
from pytorch_lightning.callbacks import ModelCheckpoint | |
classes = ('plane', 'car', 'bird', 'cat', 'deer', | |
'dog', 'frog', 'horse', 'ship', 'truck', 'NotApplicable') | |
inv_normalize = transforms.Normalize( | |
mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23], | |
std=[1/0.23, 1/0.23, 1/0.23] | |
) | |
def ts_lt( # Train and Save Vs Load and Test | |
save1_or_load0, # decision maker for training Vs testing | |
Epochs = 1, # argument for training | |
wt_fname = "/content/weights.ckpt" # argument for testing | |
): | |
checkpoint_callback = ModelCheckpoint( | |
monitor='val_acc', | |
dirpath='/content/', | |
filename='weights_{epoch:02d}_{val_acc:.2f}', | |
save_top_k=3, | |
mode='max', | |
) | |
trainer = Trainer( | |
max_epochs=Epochs, #26 | |
accelerator="auto", | |
devices=1 if torch.cuda.is_available() else None, # limiting got iPython runs | |
logger=CSVLogger(save_dir="logs/"), | |
callbacks=[LearningRateMonitor(logging_interval="step"), TQDMProgressBar(refresh_rate=10), checkpoint_callback], | |
) | |
PATH_DATASETS = os.environ.get("PATH_DATASETS", ".") | |
BATCH_SIZE = 256 if torch.cuda.is_available() else 64 | |
NUM_WORKERS = int(os.cpu_count() / 2) | |
train_transforms = torchvision.transforms.Compose( | |
[ | |
torchvision.transforms.RandomCrop(32, padding=4), | |
torchvision.transforms.RandomHorizontalFlip(), | |
torchvision.transforms.ToTensor(), | |
cifar10_normalization(), | |
] | |
) | |
test_transforms = torchvision.transforms.Compose( | |
[ | |
torchvision.transforms.ToTensor(), | |
cifar10_normalization(), | |
] | |
) | |
cifar10_dm = CIFAR10DataModule( | |
data_dir=PATH_DATASETS, | |
batch_size=BATCH_SIZE, | |
num_workers=NUM_WORKERS, | |
train_transforms=train_transforms, | |
test_transforms=test_transforms, | |
val_transforms=test_transforms, | |
) | |
if save1_or_load0 == True: | |
model = LitResnet(lr=0.05) | |
checkpoint_callback = ModelCheckpoint( | |
monitor='val_acc', | |
dirpath='/content/', | |
filename='weights_{epoch:02d}_{val_acc:.2f}', | |
save_top_k=3, | |
mode='max', | |
) | |
trainer.fit(model, cifar10_dm) | |
else: | |
model = LitResnet(lr=0.05).load_from_checkpoint(wt_fname) | |
trainer.test(model, datamodule=cifar10_dm) | |
return model, trainer |