raja5259 commited on
Commit
3f08bb8
·
verified ·
1 Parent(s): f9fe250

update lightning_model

Browse files
Files changed (1) hide show
  1. lightningmodel.py +9 -7
lightningmodel.py CHANGED
@@ -2,6 +2,7 @@ import os
2
  import math
3
  import numpy as np
4
  import pandas as pd
 
5
  import torch
6
  import torch.nn as nn
7
  import torch.nn.functional as F
@@ -24,6 +25,7 @@ from PIL import Image
24
  from pytorch_grad_cam import GradCAM
25
  from pytorch_grad_cam.utils.image import show_cam_on_image
26
 
 
27
  seed_everything(7)
28
 
29
 
@@ -109,9 +111,9 @@ class Net_S13(nn.Module):
109
  O = 10
110
  self.lastLayer = nn.Linear(I, O)
111
 
112
- self.aGAP = nn.AdaptiveAvgPool2d((1, 1))
113
- self.flat = nn.Flatten(1, -1)
114
- self.gap = nn.AvgPool2d(avg)
115
  self.drop = nn.Dropout(drop)
116
 
117
  # convolution Block
@@ -186,11 +188,10 @@ class Net_S13(nn.Module):
186
  self.printf(4.0, x, "pool input")
187
  x = self.pool(x)
188
  self.printf(4.1, x, "pool output")
189
- self.printEmpty()
190
-
191
- # x = x.view(-1, 10)
192
- self.printf(4.2, x, "For showing before last layer")
193
  x = x.view(x.size(0), -1)
 
 
 
194
  self.printf(5.0, x, "last layer input") #512, 1, 1
195
  x = self.lastLayer(x)
196
  # x = self.gap(x)
@@ -242,6 +243,7 @@ class LitResnet(LightningModule):
242
  self.evaluate(batch, "test")
243
 
244
  def configure_optimizers(self):
 
245
  optimizer = torch.optim.SGD(
246
  self.parameters(),
247
  lr=self.hparams.lr,
 
2
  import math
3
  import numpy as np
4
  import pandas as pd
5
+ import seaborn as sn
6
  import torch
7
  import torch.nn as nn
8
  import torch.nn.functional as F
 
25
  from pytorch_grad_cam import GradCAM
26
  from pytorch_grad_cam.utils.image import show_cam_on_image
27
 
28
+
29
  seed_everything(7)
30
 
31
 
 
111
  O = 10
112
  self.lastLayer = nn.Linear(I, O)
113
 
114
+ # self.aGAP = nn.AdaptiveAvgPool2d((1, 1))
115
+ # self.flat = nn.Flatten(1, -1)
116
+ # self.gap = nn.AvgPool2d(avg)
117
  self.drop = nn.Dropout(drop)
118
 
119
  # convolution Block
 
188
  self.printf(4.0, x, "pool input")
189
  x = self.pool(x)
190
  self.printf(4.1, x, "pool output")
 
 
 
 
191
  x = x.view(x.size(0), -1)
192
+ self.printf(4.2, x, "after view")
193
+ self.printEmpty()
194
+
195
  self.printf(5.0, x, "last layer input") #512, 1, 1
196
  x = self.lastLayer(x)
197
  # x = self.gap(x)
 
243
  self.evaluate(batch, "test")
244
 
245
  def configure_optimizers(self):
246
+ BATCH_SIZE = 256 if torch.cuda.is_available() else 64
247
  optimizer = torch.optim.SGD(
248
  self.parameters(),
249
  lr=self.hparams.lr,