Spaces:
Runtime error
Runtime error
Create trainsave_loadtest.py
Browse files- trainsave_loadtest.py +101 -0
trainsave_loadtest.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torchvision
|
4 |
+
from torchvision import datasets, transforms, utils
|
5 |
+
from pl_bolts.datamodules import CIFAR10DataModule
|
6 |
+
from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
|
7 |
+
from pytorch_lightning import LightningModule, Trainer, seed_everything
|
8 |
+
from pytorch_lightning.callbacks import LearningRateMonitor
|
9 |
+
from pytorch_lightning.callbacks.progress import TQDMProgressBar
|
10 |
+
from pytorch_lightning.loggers import CSVLogger
|
11 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
12 |
+
from torch.optim.swa_utils import AveragedModel, update_bn
|
13 |
+
from torchmetrics.functional import accuracy
|
14 |
+
import pandas as pd
|
15 |
+
import seaborn as sn
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
# from IPython.core.display import display
|
19 |
+
import misclas_helper
|
20 |
+
import gradcam_helper
|
21 |
+
import lightningmodel
|
22 |
+
from misclas_helper import display_cifar_misclassified_data
|
23 |
+
from gradcam_helper import display_gradcam_output
|
24 |
+
from misclas_helper import get_misclassified_data2
|
25 |
+
from misclas_helper import classify_images
|
26 |
+
from lightningmodel import LitResnet
|
27 |
+
#ref : https://pytorch-lightning.readthedocs.io/en/1.2.10/common/weights_loading.html
|
28 |
+
from pytorch_lightning.callbacks import ModelCheckpoint
|
29 |
+
|
30 |
+
classes = ('plane', 'car', 'bird', 'cat', 'deer',
|
31 |
+
'dog', 'frog', 'horse', 'ship', 'truck', 'NotApplicable')
|
32 |
+
|
33 |
+
inv_normalize = transforms.Normalize(
|
34 |
+
mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23],
|
35 |
+
std=[1/0.23, 1/0.23, 1/0.23]
|
36 |
+
)
|
37 |
+
|
38 |
+
def ts_lt( # Train and Save Vs Load and Test
|
39 |
+
save1_or_load0, # decision maker for training Vs testing
|
40 |
+
Epochs = 1, # argument for training
|
41 |
+
wt_fname = "/content/weights.ckpt" # argument for testing
|
42 |
+
):
|
43 |
+
checkpoint_callback = ModelCheckpoint(
|
44 |
+
monitor='val_acc',
|
45 |
+
dirpath='/content/',
|
46 |
+
filename='weights_{epoch:02d}_{val_acc:.2f}',
|
47 |
+
save_top_k=3,
|
48 |
+
mode='max',
|
49 |
+
)
|
50 |
+
|
51 |
+
trainer = Trainer(
|
52 |
+
max_epochs=Epochs, #26
|
53 |
+
accelerator="auto",
|
54 |
+
devices=1 if torch.cuda.is_available() else None, # limiting got iPython runs
|
55 |
+
logger=CSVLogger(save_dir="logs/"),
|
56 |
+
callbacks=[LearningRateMonitor(logging_interval="step"), TQDMProgressBar(refresh_rate=10), checkpoint_callback],
|
57 |
+
)
|
58 |
+
PATH_DATASETS = os.environ.get("PATH_DATASETS", ".")
|
59 |
+
BATCH_SIZE = 256 if torch.cuda.is_available() else 64
|
60 |
+
NUM_WORKERS = int(os.cpu_count() / 2)
|
61 |
+
|
62 |
+
train_transforms = torchvision.transforms.Compose(
|
63 |
+
[
|
64 |
+
torchvision.transforms.RandomCrop(32, padding=4),
|
65 |
+
torchvision.transforms.RandomHorizontalFlip(),
|
66 |
+
torchvision.transforms.ToTensor(),
|
67 |
+
cifar10_normalization(),
|
68 |
+
]
|
69 |
+
)
|
70 |
+
|
71 |
+
test_transforms = torchvision.transforms.Compose(
|
72 |
+
[
|
73 |
+
torchvision.transforms.ToTensor(),
|
74 |
+
cifar10_normalization(),
|
75 |
+
]
|
76 |
+
)
|
77 |
+
cifar10_dm = CIFAR10DataModule(
|
78 |
+
data_dir=PATH_DATASETS,
|
79 |
+
batch_size=BATCH_SIZE,
|
80 |
+
num_workers=NUM_WORKERS,
|
81 |
+
train_transforms=train_transforms,
|
82 |
+
test_transforms=test_transforms,
|
83 |
+
val_transforms=test_transforms,
|
84 |
+
)
|
85 |
+
|
86 |
+
if save1_or_load0 == True:
|
87 |
+
model = LitResnet(lr=0.05)
|
88 |
+
checkpoint_callback = ModelCheckpoint(
|
89 |
+
monitor='val_acc',
|
90 |
+
dirpath='/content/',
|
91 |
+
filename='weights_{epoch:02d}_{val_acc:.2f}',
|
92 |
+
save_top_k=3,
|
93 |
+
mode='max',
|
94 |
+
)
|
95 |
+
trainer.fit(model, cifar10_dm)
|
96 |
+
else:
|
97 |
+
model = LitResnet(lr=0.05).load_from_checkpoint(wt_fname)
|
98 |
+
|
99 |
+
trainer.test(model, datamodule=cifar10_dm)
|
100 |
+
|
101 |
+
return model, trainer
|