File size: 4,679 Bytes
04966a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import math
import numpy as np
import pandas as pd
import seaborn as sn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.nn.functional as F
from IPython.core.display import display
from pl_bolts.datamodules import CIFAR10DataModule
from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
from pytorch_lightning import LightningModule, Trainer, seed_everything
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.callbacks.progress import TQDMProgressBar
from pytorch_lightning.loggers import CSVLogger
from torch.optim.lr_scheduler import OneCycleLR
from torch.optim.swa_utils import AveragedModel, update_bn
from torchmetrics.functional import accuracy
from pytorch_lightning.callbacks import ModelCheckpoint
from torchvision import datasets, transforms, utils
from PIL import Image
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image

# Denormalize the data using test mean and std deviation
inv_normalize = transforms.Normalize(
    mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23],
    std=[1/0.23, 1/0.23, 1/0.23]
)


def get_misclassified_data2(model, device, count):
    """
    Function to run the model on test set and return misclassified images
    :param model: Network Architecture
    :param device: CPU/GPU
    :param test_loader: DataLoader for test set
    """

    PATH_DATASETS = os.environ.get("PATH_DATASETS", ".")
    BATCH_SIZE = 256 if torch.cuda.is_available() else 64
    NUM_WORKERS = int(os.cpu_count() / 2)


    train_transforms = torchvision.transforms.Compose(
        [
            torchvision.transforms.RandomCrop(32, padding=4),
            torchvision.transforms.RandomHorizontalFlip(),
            torchvision.transforms.ToTensor(),
            cifar10_normalization(),
        ]
    )

    test_transforms = torchvision.transforms.Compose(
        [
            torchvision.transforms.ToTensor(),
            cifar10_normalization(),
        ]
    )

    cifar10_dm = CIFAR10DataModule(
        data_dir=PATH_DATASETS,
        batch_size=BATCH_SIZE,
        num_workers=NUM_WORKERS,
        train_transforms=train_transforms,
        test_transforms=test_transforms,
        val_transforms=test_transforms,
    )

    cifar10_dm.prepare_data()
    cifar10_dm.setup()
    test_loader = cifar10_dm.test_dataloader()

    # Prepare the model for evaluation i.e. drop the dropout layer
    model.eval()

    # List to store misclassified Images
    misclassified_data = []

    # Reset the gradients
    with torch.no_grad():
        # Extract images, labels in a batch
        for data, target in test_loader:

            # Migrate the data to the device
            data, target = data.to(device), target.to(device)

            # Extract single image, label from the batch
            for image, label in zip(data, target):

                # Add batch dimension to the image
                image = image.unsqueeze(0)

                # Get the model prediction on the image
                output = model(image)

                # Convert the output from one-hot encoding to a value
                pred = output.argmax(dim=1, keepdim=True)

                # If prediction is incorrect, append the data
                if pred != label:
                    misclassified_data.append((image, label, pred))

                if len(misclassified_data) > count :
                  break
    return misclassified_data


# Yes - This is important predecessor2 for gradioMisClass

def display_cifar_misclassified_data(data: list,
                                     classes: list[str],
                                     inv_normalize: transforms.Normalize,
                                     number_of_samples: int = 10):
    """
    Function to plot images with labels
    :param data: List[Tuple(image, label)]
    :param classes: Name of classes in the dataset
    :param inv_normalize: Mean and Standard deviation values of the dataset
    :param number_of_samples: Number of images to print
    """
    fig = plt.figure(figsize=(10, 10))
    img = None
    x_count = 5
    y_count = 1 if number_of_samples <= 5 else math.floor(number_of_samples / x_count)

    for i in range(number_of_samples):
        plt.subplot(y_count, x_count, i + 1)
        img = data[i][0].squeeze().to('cpu')
        img = inv_normalize(img)
        plt.imshow(np.transpose(img, (1, 2, 0)))
        plt.xticks([])
        plt.yticks([])
    plt.savefig('imshow_output_misclas.png')
    return 'imshow_output_misclas.png'

# Plot the misclassified data