import os import math import numpy as np import pandas as pd import seaborn as sn import torch import torch.nn as nn import torch.nn.functional as F import torchvision import matplotlib.pyplot as plt import torch.nn as nn import torch.nn.functional as F from pl_bolts.datamodules import CIFAR10DataModule from pl_bolts.transforms.dataset_normalizations import cifar10_normalization from pytorch_lightning import LightningModule, Trainer, seed_everything from pytorch_lightning.callbacks import LearningRateMonitor from pytorch_lightning.callbacks.progress import TQDMProgressBar from pytorch_lightning.loggers import CSVLogger from torch.optim.lr_scheduler import OneCycleLR from torch.optim.swa_utils import AveragedModel, update_bn from torchmetrics.functional import accuracy from pytorch_lightning.callbacks import ModelCheckpoint from torchvision import datasets, transforms, utils from PIL import Image from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.image import show_cam_on_image seed_everything(7) class Net_S13(nn.Module): #class ResNet(nn.Module): def __init__(self): super(Net_S13, self).__init__() #super(ResNet, self).__init__() # Control Variable self.printShape = False #Common :- set1 = 64 #prepLayer set2 = 128 #Layer2 set3 = 256 #Layer3 set4 = 512 #Layer4 avg = 1024 #channels drop = 0.1 #dropout S = 1 #stride K = 3 #kernel_size # PrepLayer - Conv 3x3 s1, p1) >> BN >> RELU [64k] I = 3 O = set1 P = 1 #padding self.prepLayer = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P) # Layer1 - # X = Conv 3x3 (s1, p1) >> MaxPool2D >> BN >> RELU [128k] # R1 = ResBlock( (Conv-BN-ReLU-Conv-BN-ReLU))(X) [128k] # Add(X, R1) I = O O = set2 P = 1 #padding self.Layer1 = self.convMPBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P) I = O O = I P = 1 #padding self.resNetLayer1Part1 = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P) I = O O = I P = 1 #padding self.resNetLayer1Part2 = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P) # Layer 2 - # Conv 3x3 [256k] # MaxPooling2D # BN # ReLU I = O O = set3 P = 1 #padding self.Layer2 = self.convMPBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P) # Layer 3 - # X = Conv 3x3 (s1, p1) >> MaxPool2D >> BN >> RELU [512k] # R2 = ResBlock( (Conv-BN-ReLU-Conv-BN-ReLU))(X) [512k] # Add(X, R2) I = O O = set4 P = 1 #padding self.Layer3 = self.convMPBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P) I = O O = I P = 1 #padding self.resNetLayer2Part1 = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P) I = O O = I P = 1 #padding self.resNetLayer2Part2 = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P) # MaxPooling with Kernel Size 4 self.pool = nn.MaxPool2d(kernel_size = 4, stride = 4) # FC Layer I = 512 O = 10 self.lastLayer = nn.Linear(I, O) self.aGAP = nn.AdaptiveAvgPool2d((1, 1)) self.flat = nn.Flatten(1, -1) self.gap = nn.AvgPool2d(avg) self.drop = nn.Dropout(drop) # convolution Block def convBlock(self, in_channels, out_channels, kernel_size, stride, padding, last_layer = False, bias = False): if(False == last_layer): return nn.Sequential( nn.Conv2d(in_channels = in_channels, out_channels = out_channels, stride = stride, padding = padding, kernel_size = kernel_size, bias = bias), nn.BatchNorm2d(out_channels), nn.ReLU()) else: return nn.Sequential( nn.Conv2d(in_channels = in_channels, out_channels = out_channels, stride = stride, padding = padding, kernel_size = kernel_size, bias = bias)) # convolution-MP Block def convMPBlock(self, in_channels, out_channels, kernel_size, stride, padding, bias = False): return nn.Sequential( nn.Conv2d(in_channels = in_channels, out_channels = out_channels, stride = stride, padding = padding, kernel_size = kernel_size, bias = bias), nn.MaxPool2d(kernel_size = 2, stride = 2), nn.BatchNorm2d(out_channels), nn.ReLU()) def printf(self, n, x, string1=""): if(self.printShape): print(f"{n} " f"{x.shape = }" f" {string1}") ## Comment / Uncomment this line towards the no need of print or needed print pass def printEmpty(self,): if(self.printShape): print("") ## Comment / Uncomment this line towards the no need of print or needed print pass def forward(self, x): self.printf(0.0, x, "prepLayer input") x = self.prepLayer(x) x = self.drop(x) self.printf(0.1, x, "prepLayer output") self.printEmpty() self.printf(1.0, x, "Layer1 input") x = self.Layer1(x) self.printf(1.1, x, "Layer1 output --> sacroscant") y = x #sacrosanct path1 self.printf(1.2, x, "Layer1 resnet input") x = self.resNetLayer1Part1(x) #residual path1 x = self.drop(x) x = self.resNetLayer1Part2(x) #residual path1 self.printf(1.3, x, "Layer1 resnet output") x = x + y #adding sacrosanct path1 and residual path1 x = self.drop(x) self.printf(1.4, x, "res+sacrosanct output") self.printEmpty() self.printf(2.0, x, "Layer2 input") x = self.Layer2(x) x = self.drop(x) self.printf(2.1, x, "Layer2 output") self.printEmpty() self.printf(3.0, x, "Layer3 input") x = self.Layer3(x) self.printf(3.1, x, "Layer3 output --> sacroscant") y = x #sacrosanct path2 self.printf(3.2, x, "Layer3 resnet input") x = self.resNetLayer2Part1(x) #residual path2 x = self.drop(x) x = self.resNetLayer2Part2(x) #residual path2 self.printf(3.3, x, "Layer3 resnet output") x = x + y #adding sacrosanct path2 and residual path2 x = self.drop(x) self.printf(3.4, x, "res+sacrosanct output") self.printEmpty() self.printf(4.0, x, "pool input") x = self.pool(x) self.printf(4.1, x, "pool output") self.printEmpty() # x = x.view(-1, 10) self.printf(4.2, x, "For showing before last layer") x = x.view(x.size(0), -1) self.printf(5.0, x, "last layer input") #512, 1, 1 x = self.lastLayer(x) # x = self.gap(x) self.printf(5.1, x, "last layer output") #10, 1, 1 self.printEmpty() # self.printf(7.0, x) return F.log_softmax(x) def create_model(): model = Net_S13() return model class LitResnet(LightningModule): def __init__(self, lr=0.05): super().__init__() self.save_hyperparameters() self.model = create_model() def forward(self, x): out = self.model(x) return F.log_softmax(out, dim=1) def training_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) self.log("train_loss", loss) return loss def evaluate(self, batch, stage=None): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y, task='MULTICLASS', num_classes=10) if stage: self.log(f"{stage}_loss", loss, prog_bar=True) self.log(f"{stage}_acc", acc, prog_bar=True) def validation_step(self, batch, batch_idx): self.evaluate(batch, "val") def test_step(self, batch, batch_idx): self.evaluate(batch, "test") def configure_optimizers(self): optimizer = torch.optim.SGD( self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4, ) steps_per_epoch = 45000 // BATCH_SIZE scheduler_dict = { "scheduler": OneCycleLR( optimizer, 0.1, epochs=self.trainer.max_epochs, steps_per_epoch=steps_per_epoch, ), "interval": "step", } return {"optimizer": optimizer, "lr_scheduler": scheduler_dict}