File size: 5,045 Bytes
53d8e52
 
 
 
efb1b7a
53d8e52
 
 
 
648f1a1
53d8e52
32c2394
 
 
 
 
 
 
648f1a1
 
32c2394
53d8e52
 
 
 
 
 
 
 
 
e5702bf
 
 
53d8e52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5702bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53d8e52
 
32c2394
efb1b7a
53d8e52
 
 
32c2394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
648f1a1
32c2394
 
 
648f1a1
32c2394
648f1a1
32c2394
648f1a1
32c2394
53d8e52
 
32c2394
53d8e52
32c2394
53d8e52
 
 
 
32c2394
 
 
 
 
 
 
 
648f1a1
32c2394
 
 
648f1a1
53d8e52
 
 
648f1a1
 
53d8e52
648f1a1
 
 
 
 
 
 
 
 
 
 
 
53d8e52
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import streamlit as st
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain, ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.document_loaders import PyPDFLoader
import time

# Initialize session state variables
if "messages" not in st.session_state:
    st.session_state.messages = []
if "chain" not in st.session_state:
    st.session_state.chain = None
if "processed_pdfs" not in st.session_state:
    st.session_state.processed_pdfs = False
if "waiting_for_answer" not in st.session_state:
    st.session_state.waiting_for_answer = False

def create_sidebar():
    with st.sidebar:
        st.title("PDF Chat")
        st.markdown("### Quick Demo of RAG")
        
        api_key = st.text_input("OpenAI API Key:", type="password")
        
        st.markdown("""
        ### Tools Used
        - OpenAI
        - LangChain
        - ChromaDB
        
        ### Steps
        1. Add API key
        2. Upload PDF
        3. Chat!
        """)
        
        return api_key

def save_uploaded_file(uploaded_file, path='./uploads/'):
    os.makedirs(path, exist_ok=True)
    file_path = os.path.join(path, uploaded_file.name)
    with open(file_path, "wb") as f:
        f.write(uploaded_file.getbuffer())
    return file_path

def load_texts_from_papers(papers):
    all_texts = []
    for paper in papers:
        try:
            file_path = save_uploaded_file(paper)
            loader = PyPDFLoader(file_path)
            documents = loader.load()
            text_splitter = RecursiveCharacterTextSplitter(
                chunk_size=1000,
                chunk_overlap=200,
                length_function=len,
                is_separator_regex=False,
            )
            texts = text_splitter.split_documents(documents)
            all_texts.extend(texts)
            os.remove(file_path)
        except Exception as e:
            st.error(f"Error processing {paper.name}: {str(e)}")
    return all_texts

def initialize_vectorstore(api_key):
    embedding = OpenAIEmbeddings(openai_api_key=api_key)
    vectorstore = Chroma(embedding_function=embedding, persist_directory="db")
    return vectorstore

def process_pdfs(papers, api_key):
    if papers and not st.session_state.processed_pdfs:
        with st.spinner("Processing PDFs..."):
            texts = load_texts_from_papers(papers)
            if texts:
                vectorstore = initialize_vectorstore(api_key)
                vectorstore.add_documents(texts)
                st.session_state.chain = ConversationalRetrievalChain.from_llm(
                    ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_key=api_key),
                    vectorstore.as_retriever(),
                    memory=ConversationBufferMemory(
                        memory_key="chat_history",
                        return_messages=True
                    )
                )
                st.session_state.processed_pdfs = True
                st.success("PDFs processed successfully!")
            return texts
    return []

def get_assistant_response(prompt, texts):
    try:
        if texts or st.session_state.processed_pdfs:
            result = st.session_state.chain({"question": prompt})
            return result["answer"]
        else:
            return "Please upload a PDF first."
    except Exception as e:
        return f"Error: {str(e)}"

def main():
    st.set_page_config(page_title="PDF Chat", layout="wide")
    
    api_key = create_sidebar()
    
    if not api_key:
        st.warning("Please enter your OpenAI API key")
        return

    st.title("Chat with PDF")
    
    # File uploader
    papers = st.file_uploader("Upload PDFs", type=["pdf"], accept_multiple_files=True)
    
    # Process PDFs
    texts = process_pdfs(papers, api_key)
    
    # Chat interface
    chat_container = st.container()
    
    with chat_container:
        # Display existing chat messages
        for message in st.session_state.messages:
            with st.chat_message(message["role"]):
                st.markdown(message["content"])
        
        # Get user input
        if prompt := st.chat_input("Ask about your PDFs"):
            # Add user message immediately
            st.session_state.messages.append({"role": "user", "content": prompt})
            st.chat_message("user").markdown(prompt)
            
            # Get assistant response with a loading indicator
            with st.chat_message("assistant"):
                with st.spinner("Thinking..."):
                    response = get_assistant_response(prompt, texts)
                st.markdown(response)
            
            # Add assistant response to messages
            st.session_state.messages.append({"role": "assistant", "content": response})

if __name__ == "__main__":
    main()