File size: 5,073 Bytes
53d8e52 226a55c efb1b7a 53d8e52 bca9228 53d8e52 32c2394 53d8e52 d0e6488 53d8e52 d0e6488 e5702bf d0e6488 11c9bc2 d0e6488 53d8e52 d0e6488 53d8e52 d0e6488 53d8e52 32c2394 c316c4f 226a55c c316c4f bca9228 c316c4f 32c2394 c316c4f 11c9bc2 c316c4f 226a55c c316c4f 226a55c c316c4f 32c2394 53d8e52 bca9228 32c2394 53d8e52 d0e6488 32c2394 d0e6488 32c2394 c316c4f d0e6488 c316c4f 32c2394 d0e6488 bca9228 32c2394 d0e6488 bca9228 648f1a1 bca9228 648f1a1 bca9228 c316c4f d0e6488 bca9228 648f1a1 bca9228 648f1a1 bca9228 648f1a1 53d8e52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import os
import streamlit as st
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.document_loaders import PyPDFLoader
# Initialize session state variables
if "messages" not in st.session_state:
st.session_state.messages = []
if "chain" not in st.session_state:
st.session_state.chain = None
def create_sidebar():
with st.sidebar:
st.title("π€ PDF Chat")
api_key = st.text_input("OpenAI API Key:", type="password", help="Get your API key from OpenAI website")
st.markdown("""
### What is this?
A simple app that lets you chat with your PDF files using GPT and RAG.
### How to use
1. Paste your OpenAI API key
2. Upload PDF file(s)
3. Click 'Process PDFs'
4. Start asking questions!
### Built using
- LangChain
- OpenAI
- FAISS
- Streamlit
Made with β
""")
return api_key
def process_pdfs(papers, api_key):
"""Process PDFs and return whether processing was successful"""
if not papers:
return False
with st.spinner("Processing PDFs..."):
try:
embeddings = OpenAIEmbeddings(openai_api_key=api_key)
all_texts = []
for paper in papers:
file_path = os.path.join('./uploads', paper.name)
os.makedirs('./uploads', exist_ok=True)
with open(file_path, "wb") as f:
f.write(paper.getbuffer())
loader = PyPDFLoader(file_path)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
texts = text_splitter.split_documents(documents)
all_texts.extend(texts)
os.remove(file_path)
vectorstore = FAISS.from_documents(all_texts, embeddings)
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True,
output_key="answer"
)
st.session_state.chain = ConversationalRetrievalChain.from_llm(
llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_key=api_key),
retriever=vectorstore.as_retriever(),
memory=memory,
return_source_documents=False,
chain_type="stuff"
)
st.success(f"Processed {len(papers)} PDF(s) successfully!")
return True
except Exception as e:
st.error(f"Error processing PDFs: {str(e)}")
return False
def main():
st.set_page_config(page_title="PDF Chat")
api_key = create_sidebar()
st.title("π¬ Chat with your PDFs")
st.markdown("""
### π Hey there!
This is a simple demo showing how to chat with your PDF documents using GPT and RAG (Retrieval Augmented Generation).
#### Try it out:
- Upload one or more PDFs
- Ask questions about their content
- The app will use RAG to find relevant info and answer your questions
""")
st.divider()
# File uploader with custom styling
st.markdown("### π Upload your documents")
papers = st.file_uploader("Choose PDF files", type=["pdf"], accept_multiple_files=True)
if papers:
st.markdown(f"*{len(papers)} files uploaded*")
if st.button("Process PDFs"):
process_pdfs(papers, api_key)
st.divider()
if not api_key:
st.warning("π Please enter your OpenAI API key in the sidebar to start")
return
# Chat interface
st.markdown("### π Chat")
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Ask about your PDFs..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
if st.session_state.chain is None:
response = "Please upload and process a PDF first! π"
else:
with st.spinner("Thinking..."):
result = st.session_state.chain({"question": prompt})
response = result["answer"]
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
if __name__ == "__main__":
main() |