File size: 5,073 Bytes
53d8e52
 
 
226a55c
efb1b7a
53d8e52
bca9228
53d8e52
 
 
32c2394
 
 
 
 
 
53d8e52
 
d0e6488
 
 
 
53d8e52
d0e6488
 
 
 
 
 
 
 
 
 
e5702bf
d0e6488
11c9bc2
d0e6488
53d8e52
d0e6488
53d8e52
d0e6488
53d8e52
 
32c2394
c316c4f
 
 
 
 
 
 
 
226a55c
c316c4f
 
 
 
 
bca9228
c316c4f
 
 
 
 
32c2394
c316c4f
 
 
 
11c9bc2
c316c4f
226a55c
 
 
 
 
 
c316c4f
 
226a55c
 
 
 
c316c4f
 
 
 
 
 
 
 
32c2394
53d8e52
bca9228
32c2394
53d8e52
 
d0e6488
 
 
 
 
 
 
 
 
 
 
 
32c2394
d0e6488
 
 
32c2394
c316c4f
d0e6488
c316c4f
 
32c2394
d0e6488
 
 
 
 
 
 
 
bca9228
 
 
32c2394
d0e6488
bca9228
648f1a1
bca9228
 
648f1a1
bca9228
c316c4f
d0e6488
bca9228
648f1a1
bca9228
 
648f1a1
bca9228
648f1a1
53d8e52
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import streamlit as st
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.document_loaders import PyPDFLoader

# Initialize session state variables
if "messages" not in st.session_state:
    st.session_state.messages = []
if "chain" not in st.session_state:
    st.session_state.chain = None

def create_sidebar():
    with st.sidebar:
        st.title("πŸ€– PDF Chat")
        
        api_key = st.text_input("OpenAI API Key:", type="password", help="Get your API key from OpenAI website")
        
        st.markdown("""
        ### What is this?
        A simple app that lets you chat with your PDF files using GPT and RAG.
        
        ### How to use
        1. Paste your OpenAI API key
        2. Upload PDF file(s)
        3. Click 'Process PDFs'
        4. Start asking questions!
        
        ### Built using
        - LangChain
        - OpenAI
        - FAISS
        - Streamlit
        
        Made with β˜•
        """)
        
        return api_key

def process_pdfs(papers, api_key):
    """Process PDFs and return whether processing was successful"""
    if not papers:
        return False
        
    with st.spinner("Processing PDFs..."):
        try:
            embeddings = OpenAIEmbeddings(openai_api_key=api_key)
            all_texts = []
            
            for paper in papers:
                file_path = os.path.join('./uploads', paper.name)
                os.makedirs('./uploads', exist_ok=True)
                with open(file_path, "wb") as f:
                    f.write(paper.getbuffer())
                
                loader = PyPDFLoader(file_path)
                documents = loader.load()
                text_splitter = RecursiveCharacterTextSplitter(
                    chunk_size=1000,
                    chunk_overlap=200,
                )
                texts = text_splitter.split_documents(documents)
                all_texts.extend(texts)
                os.remove(file_path)
            
            vectorstore = FAISS.from_documents(all_texts, embeddings)
            
            memory = ConversationBufferMemory(
                memory_key="chat_history",
                return_messages=True,
                output_key="answer"
            )
            
            st.session_state.chain = ConversationalRetrievalChain.from_llm(
                llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_key=api_key),
                retriever=vectorstore.as_retriever(),
                memory=memory,
                return_source_documents=False,
                chain_type="stuff"
            )
            
            st.success(f"Processed {len(papers)} PDF(s) successfully!")
            return True
            
        except Exception as e:
            st.error(f"Error processing PDFs: {str(e)}")
            return False

def main():
    st.set_page_config(page_title="PDF Chat")
    
    api_key = create_sidebar()

    st.title("πŸ’¬ Chat with your PDFs")
    st.markdown("""
    ### πŸ‘‹ Hey there!
    This is a simple demo showing how to chat with your PDF documents using GPT and RAG (Retrieval Augmented Generation).
    
    #### Try it out:
    - Upload one or more PDFs 
    - Ask questions about their content
    - The app will use RAG to find relevant info and answer your questions
    """)
    
    st.divider()
    
    # File uploader with custom styling
    st.markdown("### πŸ“„ Upload your documents")
    papers = st.file_uploader("Choose PDF files", type=["pdf"], accept_multiple_files=True)
    
    if papers:
        st.markdown(f"*{len(papers)} files uploaded*")
        if st.button("Process PDFs"):
            process_pdfs(papers, api_key)
    
    st.divider()
    
    if not api_key:
        st.warning("πŸ‘† Please enter your OpenAI API key in the sidebar to start")
        return
    
    # Chat interface
    st.markdown("### πŸ’­ Chat")
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])
    
    if prompt := st.chat_input("Ask about your PDFs..."):
        st.session_state.messages.append({"role": "user", "content": prompt})
        
        with st.chat_message("user"):
            st.markdown(prompt)
            
        with st.chat_message("assistant"):
            if st.session_state.chain is None:
                response = "Please upload and process a PDF first! πŸ‘†"
            else:
                with st.spinner("Thinking..."):
                    result = st.session_state.chain({"question": prompt})
                    response = result["answer"]
            
            st.markdown(response)
            st.session_state.messages.append({"role": "assistant", "content": response})

if __name__ == "__main__":
    main()