import os import streamlit as st from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.chat_models import ChatOpenAI from langchain.chains import ConversationalRetrievalChain, ConversationChain from langchain.memory import ConversationBufferMemory from langchain.document_loaders import PyPDFLoader import time # Initialize session state variables if "messages" not in st.session_state: st.session_state.messages = [] if "chain" not in st.session_state: st.session_state.chain = None if "processed_pdfs" not in st.session_state: st.session_state.processed_pdfs = False if "waiting_for_answer" not in st.session_state: st.session_state.waiting_for_answer = False def create_sidebar(): with st.sidebar: st.title("PDF Chat") st.markdown("### Quick Demo of RAG") api_key = st.text_input("OpenAI API Key:", type="password") st.markdown(""" ### Tools Used - OpenAI - LangChain - ChromaDB ### Steps 1. Add API key 2. Upload PDF 3. Chat! """) return api_key def save_uploaded_file(uploaded_file, path='./uploads/'): os.makedirs(path, exist_ok=True) file_path = os.path.join(path, uploaded_file.name) with open(file_path, "wb") as f: f.write(uploaded_file.getbuffer()) return file_path def load_texts_from_papers(papers): all_texts = [] for paper in papers: try: file_path = save_uploaded_file(paper) loader = PyPDFLoader(file_path) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len, is_separator_regex=False, ) texts = text_splitter.split_documents(documents) all_texts.extend(texts) os.remove(file_path) except Exception as e: st.error(f"Error processing {paper.name}: {str(e)}") return all_texts def initialize_vectorstore(api_key): embedding = OpenAIEmbeddings(openai_api_key=api_key) vectorstore = Chroma(embedding_function=embedding, persist_directory="db") return vectorstore def process_pdfs(papers, api_key): if papers and not st.session_state.processed_pdfs: with st.spinner("Processing PDFs..."): texts = load_texts_from_papers(papers) if texts: vectorstore = initialize_vectorstore(api_key) vectorstore.add_documents(texts) st.session_state.chain = ConversationalRetrievalChain.from_llm( ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_key=api_key), vectorstore.as_retriever(), memory=ConversationBufferMemory( memory_key="chat_history", return_messages=True ) ) st.session_state.processed_pdfs = True st.success("PDFs processed successfully!") return texts return [] def get_assistant_response(prompt, texts): try: if texts or st.session_state.processed_pdfs: result = st.session_state.chain({"question": prompt}) return result["answer"] else: return "Please upload a PDF first." except Exception as e: return f"Error: {str(e)}" def main(): st.set_page_config(page_title="PDF Chat", layout="wide") api_key = create_sidebar() if not api_key: st.warning("Please enter your OpenAI API key") return st.title("Chat with PDF") # File uploader papers = st.file_uploader("Upload PDFs", type=["pdf"], accept_multiple_files=True) # Process PDFs texts = process_pdfs(papers, api_key) # Chat interface chat_container = st.container() with chat_container: # Display existing chat messages for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Get user input if prompt := st.chat_input("Ask about your PDFs"): # Add user message immediately st.session_state.messages.append({"role": "user", "content": prompt}) st.chat_message("user").markdown(prompt) # Get assistant response with a loading indicator with st.chat_message("assistant"): with st.spinner("Thinking..."): response = get_assistant_response(prompt, texts) st.markdown(response) # Add assistant response to messages st.session_state.messages.append({"role": "assistant", "content": response}) if __name__ == "__main__": main()