rajesh1729 commited on
Commit
2f6c576
·
verified ·
1 Parent(s): ff0f1c3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -84
app.py CHANGED
@@ -1,84 +1,84 @@
1
- import streamlit as st
2
- import pandas as pd
3
- import numpy as np
4
- import plotly.express as px
5
- from wordcloud import WordCloud, STOPWORDS
6
- import matplotlib.pyplot as plt
7
-
8
- st.set_option('deprecation.showPyplotGlobalUse', False)
9
-
10
- DATA_ = pd.read_csv("Tweets.csv")
11
- st.title("Sentiment Analysis of Tweets about US Airlines")
12
- st.sidebar.title("Sentiment Analysis of Tweets about US Airlines")
13
- st.markdown("This application is a streamlit dashboard to analyze the sentiment of Tweets")
14
- st.sidebar.markdown("This application is a streamlit dashboard to analyze the sentiment of Tweets")
15
-
16
-
17
- def run():
18
-
19
- @st.cache(persist=True)
20
- def load_data():
21
- DATA_['tweet_created'] = pd.to_datetime(DATA_['tweet_created'])
22
- return DATA_
23
- data = load_data()
24
-
25
- st.sidebar.subheader("Show random tweet")
26
- random_tweet = st.sidebar.radio('Sentiment', ('positive', 'neutral', 'negative'))
27
- st.sidebar.markdown(data.query('airline_sentiment == @random_tweet')[["text"]].sample(n=1).iat[0,0])
28
-
29
- st.sidebar.markdown("### Number of tweets by sentiment")
30
- select = st.sidebar.selectbox('Visualization type', ['Histogram', 'Pie chart'])
31
- sentiment_count = data['airline_sentiment'].value_counts()
32
- sentiment_count = pd.DataFrame({'Sentiment':sentiment_count.index, 'Tweets':sentiment_count.values})
33
-
34
- if not st.sidebar.checkbox("Hide", True):
35
- st.markdown("### Number of tweets by sentiment")
36
- if select == "Histogram":
37
- fig = px.bar(sentiment_count, x='Sentiment', y='Tweets', color='Tweets', height=500)
38
- st.plotly_chart(fig)
39
- else:
40
- fig = px.pie(sentiment_count, values='Tweets', names='Sentiment')
41
- st.plotly_chart(fig)
42
-
43
-
44
- st.sidebar.subheader("When and Where are users tweeting from?")
45
- hour = st.sidebar.slider("Hour of day", 0,23)
46
- modified_data = data[data['tweet_created'].dt.hour == hour]
47
- if not st.sidebar.checkbox("Close", True, key='1'):
48
- st.markdown("### Tweets locations based on the time of date")
49
- st.markdown("%i tweets between %i:00 and %i:00" % (len(modified_data), hour, (hour+1)%24))
50
- st.map(modified_data)
51
- if st.sidebar.checkbox("Show Raw Data", False):
52
- st.write(modified_data)
53
- st.sidebar.subheader("Breakdown airline tweets by sentiment")
54
- choice = st.sidebar.multiselect('Pick airline', ('US Airways', 'United', 'American', 'Southwest', 'Delta', 'Virgin America'), key='0')
55
-
56
- if len(choice) > 0:
57
- choice_data = data[data.airline.isin(choice)]
58
- fig_choice = px.histogram(choice_data, x='airline',
59
- y='airline_sentiment',
60
- histfunc = 'count', color = 'airline_sentiment',
61
- facet_col='airline_sentiment',
62
- labels={'airline_sentiment':'tweets'}, height=600, width=800)
63
- st.plotly_chart(fig_choice)
64
-
65
-
66
- st.sidebar.header("Word Cloud")
67
- word_sentiment = st.sidebar.radio('Display word cloud for what sentiment?',('positive', 'neutral','negative'))
68
-
69
- if not st.sidebar.checkbox("Close", True, key='3'):
70
- st.header('Word cloud for %s sentiment' % (word_sentiment))
71
- df = data[data['airline_sentiment']==word_sentiment]
72
- words = ' '.join(df['text'])
73
- processed_words = ' '.join([word for word in words.split() if 'http' not in word and not word.startswith('@') and word !='RT'])
74
- wordcloud = WordCloud(stopwords=STOPWORDS,
75
- background_color='white', height=640, width=800).generate(processed_words)
76
- plt.imshow(wordcloud)
77
- plt.xticks([])
78
- plt.yticks([])
79
- st.pyplot()
80
-
81
-
82
- if __name__ == '__main__':
83
- run()
84
-
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import plotly.express as px
5
+ from wordcloud import WordCloud, STOPWORDS
6
+ import matplotlib.pyplot as plt
7
+
8
+ st.set_option('deprecation.showPyplotGlobalUse', False)
9
+
10
+ DATA_ = pd.read_csv("Tweets.csv")
11
+ st.title("Sentiment Analysis of Tweets about US Airlines")
12
+ st.sidebar.title("Sentiment Analysis of Tweets about US Airlines")
13
+ st.markdown("This application is a streamlit dashboard to analyze the sentiment of Tweets")
14
+ st.sidebar.markdown("This application is a streamlit dashboard to analyze the sentiment of Tweets")
15
+
16
+
17
+ def run():
18
+
19
+ @st.cache_data(persist=True)
20
+ def load_data():
21
+ DATA_['tweet_created'] = pd.to_datetime(DATA_['tweet_created'])
22
+ return DATA_
23
+ data = load_data()
24
+
25
+ st.sidebar.subheader("Show random tweet")
26
+ random_tweet = st.sidebar.radio('Sentiment', ('positive', 'neutral', 'negative'))
27
+ st.sidebar.markdown(data.query('airline_sentiment == @random_tweet')[["text"]].sample(n=1).iat[0,0])
28
+
29
+ st.sidebar.markdown("### Number of tweets by sentiment")
30
+ select = st.sidebar.selectbox('Visualization type', ['Histogram', 'Pie chart'])
31
+ sentiment_count = data['airline_sentiment'].value_counts()
32
+ sentiment_count = pd.DataFrame({'Sentiment':sentiment_count.index, 'Tweets':sentiment_count.values})
33
+
34
+ if not st.sidebar.checkbox("Hide", True):
35
+ st.markdown("### Number of tweets by sentiment")
36
+ if select == "Histogram":
37
+ fig = px.bar(sentiment_count, x='Sentiment', y='Tweets', color='Tweets', height=500)
38
+ st.plotly_chart(fig)
39
+ else:
40
+ fig = px.pie(sentiment_count, values='Tweets', names='Sentiment')
41
+ st.plotly_chart(fig)
42
+
43
+
44
+ st.sidebar.subheader("When and Where are users tweeting from?")
45
+ hour = st.sidebar.slider("Hour of day", 0,23)
46
+ modified_data = data[data['tweet_created'].dt.hour == hour]
47
+ if not st.sidebar.checkbox("Close", True, key='1'):
48
+ st.markdown("### Tweets locations based on the time of date")
49
+ st.markdown("%i tweets between %i:00 and %i:00" % (len(modified_data), hour, (hour+1)%24))
50
+ st.map(modified_data)
51
+ if st.sidebar.checkbox("Show Raw Data", False):
52
+ st.write(modified_data)
53
+ st.sidebar.subheader("Breakdown airline tweets by sentiment")
54
+ choice = st.sidebar.multiselect('Pick airline', ('US Airways', 'United', 'American', 'Southwest', 'Delta', 'Virgin America'), key='0')
55
+
56
+ if len(choice) > 0:
57
+ choice_data = data[data.airline.isin(choice)]
58
+ fig_choice = px.histogram(choice_data, x='airline',
59
+ y='airline_sentiment',
60
+ histfunc = 'count', color = 'airline_sentiment',
61
+ facet_col='airline_sentiment',
62
+ labels={'airline_sentiment':'tweets'}, height=600, width=800)
63
+ st.plotly_chart(fig_choice)
64
+
65
+
66
+ st.sidebar.header("Word Cloud")
67
+ word_sentiment = st.sidebar.radio('Display word cloud for what sentiment?',('positive', 'neutral','negative'))
68
+
69
+ if not st.sidebar.checkbox("Close", True, key='3'):
70
+ st.header('Word cloud for %s sentiment' % (word_sentiment))
71
+ df = data[data['airline_sentiment']==word_sentiment]
72
+ words = ' '.join(df['text'])
73
+ processed_words = ' '.join([word for word in words.split() if 'http' not in word and not word.startswith('@') and word !='RT'])
74
+ wordcloud = WordCloud(stopwords=STOPWORDS,
75
+ background_color='white', height=640, width=800).generate(processed_words)
76
+ plt.imshow(wordcloud)
77
+ plt.xticks([])
78
+ plt.yticks([])
79
+ st.pyplot()
80
+
81
+
82
+ if __name__ == '__main__':
83
+ run()
84
+