Update app.py
Browse files
app.py
CHANGED
@@ -1,84 +1,84 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
import plotly.express as px
|
5 |
-
from wordcloud import WordCloud, STOPWORDS
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
|
8 |
-
st.set_option('deprecation.showPyplotGlobalUse', False)
|
9 |
-
|
10 |
-
DATA_ = pd.read_csv("Tweets.csv")
|
11 |
-
st.title("Sentiment Analysis of Tweets about US Airlines")
|
12 |
-
st.sidebar.title("Sentiment Analysis of Tweets about US Airlines")
|
13 |
-
st.markdown("This application is a streamlit dashboard to analyze the sentiment of Tweets")
|
14 |
-
st.sidebar.markdown("This application is a streamlit dashboard to analyze the sentiment of Tweets")
|
15 |
-
|
16 |
-
|
17 |
-
def run():
|
18 |
-
|
19 |
-
@st.
|
20 |
-
def load_data():
|
21 |
-
DATA_['tweet_created'] = pd.to_datetime(DATA_['tweet_created'])
|
22 |
-
return DATA_
|
23 |
-
data = load_data()
|
24 |
-
|
25 |
-
st.sidebar.subheader("Show random tweet")
|
26 |
-
random_tweet = st.sidebar.radio('Sentiment', ('positive', 'neutral', 'negative'))
|
27 |
-
st.sidebar.markdown(data.query('airline_sentiment == @random_tweet')[["text"]].sample(n=1).iat[0,0])
|
28 |
-
|
29 |
-
st.sidebar.markdown("### Number of tweets by sentiment")
|
30 |
-
select = st.sidebar.selectbox('Visualization type', ['Histogram', 'Pie chart'])
|
31 |
-
sentiment_count = data['airline_sentiment'].value_counts()
|
32 |
-
sentiment_count = pd.DataFrame({'Sentiment':sentiment_count.index, 'Tweets':sentiment_count.values})
|
33 |
-
|
34 |
-
if not st.sidebar.checkbox("Hide", True):
|
35 |
-
st.markdown("### Number of tweets by sentiment")
|
36 |
-
if select == "Histogram":
|
37 |
-
fig = px.bar(sentiment_count, x='Sentiment', y='Tweets', color='Tweets', height=500)
|
38 |
-
st.plotly_chart(fig)
|
39 |
-
else:
|
40 |
-
fig = px.pie(sentiment_count, values='Tweets', names='Sentiment')
|
41 |
-
st.plotly_chart(fig)
|
42 |
-
|
43 |
-
|
44 |
-
st.sidebar.subheader("When and Where are users tweeting from?")
|
45 |
-
hour = st.sidebar.slider("Hour of day", 0,23)
|
46 |
-
modified_data = data[data['tweet_created'].dt.hour == hour]
|
47 |
-
if not st.sidebar.checkbox("Close", True, key='1'):
|
48 |
-
st.markdown("### Tweets locations based on the time of date")
|
49 |
-
st.markdown("%i tweets between %i:00 and %i:00" % (len(modified_data), hour, (hour+1)%24))
|
50 |
-
st.map(modified_data)
|
51 |
-
if st.sidebar.checkbox("Show Raw Data", False):
|
52 |
-
st.write(modified_data)
|
53 |
-
st.sidebar.subheader("Breakdown airline tweets by sentiment")
|
54 |
-
choice = st.sidebar.multiselect('Pick airline', ('US Airways', 'United', 'American', 'Southwest', 'Delta', 'Virgin America'), key='0')
|
55 |
-
|
56 |
-
if len(choice) > 0:
|
57 |
-
choice_data = data[data.airline.isin(choice)]
|
58 |
-
fig_choice = px.histogram(choice_data, x='airline',
|
59 |
-
y='airline_sentiment',
|
60 |
-
histfunc = 'count', color = 'airline_sentiment',
|
61 |
-
facet_col='airline_sentiment',
|
62 |
-
labels={'airline_sentiment':'tweets'}, height=600, width=800)
|
63 |
-
st.plotly_chart(fig_choice)
|
64 |
-
|
65 |
-
|
66 |
-
st.sidebar.header("Word Cloud")
|
67 |
-
word_sentiment = st.sidebar.radio('Display word cloud for what sentiment?',('positive', 'neutral','negative'))
|
68 |
-
|
69 |
-
if not st.sidebar.checkbox("Close", True, key='3'):
|
70 |
-
st.header('Word cloud for %s sentiment' % (word_sentiment))
|
71 |
-
df = data[data['airline_sentiment']==word_sentiment]
|
72 |
-
words = ' '.join(df['text'])
|
73 |
-
processed_words = ' '.join([word for word in words.split() if 'http' not in word and not word.startswith('@') and word !='RT'])
|
74 |
-
wordcloud = WordCloud(stopwords=STOPWORDS,
|
75 |
-
background_color='white', height=640, width=800).generate(processed_words)
|
76 |
-
plt.imshow(wordcloud)
|
77 |
-
plt.xticks([])
|
78 |
-
plt.yticks([])
|
79 |
-
st.pyplot()
|
80 |
-
|
81 |
-
|
82 |
-
if __name__ == '__main__':
|
83 |
-
run()
|
84 |
-
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import plotly.express as px
|
5 |
+
from wordcloud import WordCloud, STOPWORDS
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
9 |
+
|
10 |
+
DATA_ = pd.read_csv("Tweets.csv")
|
11 |
+
st.title("Sentiment Analysis of Tweets about US Airlines")
|
12 |
+
st.sidebar.title("Sentiment Analysis of Tweets about US Airlines")
|
13 |
+
st.markdown("This application is a streamlit dashboard to analyze the sentiment of Tweets")
|
14 |
+
st.sidebar.markdown("This application is a streamlit dashboard to analyze the sentiment of Tweets")
|
15 |
+
|
16 |
+
|
17 |
+
def run():
|
18 |
+
|
19 |
+
@st.cache_data(persist=True)
|
20 |
+
def load_data():
|
21 |
+
DATA_['tweet_created'] = pd.to_datetime(DATA_['tweet_created'])
|
22 |
+
return DATA_
|
23 |
+
data = load_data()
|
24 |
+
|
25 |
+
st.sidebar.subheader("Show random tweet")
|
26 |
+
random_tweet = st.sidebar.radio('Sentiment', ('positive', 'neutral', 'negative'))
|
27 |
+
st.sidebar.markdown(data.query('airline_sentiment == @random_tweet')[["text"]].sample(n=1).iat[0,0])
|
28 |
+
|
29 |
+
st.sidebar.markdown("### Number of tweets by sentiment")
|
30 |
+
select = st.sidebar.selectbox('Visualization type', ['Histogram', 'Pie chart'])
|
31 |
+
sentiment_count = data['airline_sentiment'].value_counts()
|
32 |
+
sentiment_count = pd.DataFrame({'Sentiment':sentiment_count.index, 'Tweets':sentiment_count.values})
|
33 |
+
|
34 |
+
if not st.sidebar.checkbox("Hide", True):
|
35 |
+
st.markdown("### Number of tweets by sentiment")
|
36 |
+
if select == "Histogram":
|
37 |
+
fig = px.bar(sentiment_count, x='Sentiment', y='Tweets', color='Tweets', height=500)
|
38 |
+
st.plotly_chart(fig)
|
39 |
+
else:
|
40 |
+
fig = px.pie(sentiment_count, values='Tweets', names='Sentiment')
|
41 |
+
st.plotly_chart(fig)
|
42 |
+
|
43 |
+
|
44 |
+
st.sidebar.subheader("When and Where are users tweeting from?")
|
45 |
+
hour = st.sidebar.slider("Hour of day", 0,23)
|
46 |
+
modified_data = data[data['tweet_created'].dt.hour == hour]
|
47 |
+
if not st.sidebar.checkbox("Close", True, key='1'):
|
48 |
+
st.markdown("### Tweets locations based on the time of date")
|
49 |
+
st.markdown("%i tweets between %i:00 and %i:00" % (len(modified_data), hour, (hour+1)%24))
|
50 |
+
st.map(modified_data)
|
51 |
+
if st.sidebar.checkbox("Show Raw Data", False):
|
52 |
+
st.write(modified_data)
|
53 |
+
st.sidebar.subheader("Breakdown airline tweets by sentiment")
|
54 |
+
choice = st.sidebar.multiselect('Pick airline', ('US Airways', 'United', 'American', 'Southwest', 'Delta', 'Virgin America'), key='0')
|
55 |
+
|
56 |
+
if len(choice) > 0:
|
57 |
+
choice_data = data[data.airline.isin(choice)]
|
58 |
+
fig_choice = px.histogram(choice_data, x='airline',
|
59 |
+
y='airline_sentiment',
|
60 |
+
histfunc = 'count', color = 'airline_sentiment',
|
61 |
+
facet_col='airline_sentiment',
|
62 |
+
labels={'airline_sentiment':'tweets'}, height=600, width=800)
|
63 |
+
st.plotly_chart(fig_choice)
|
64 |
+
|
65 |
+
|
66 |
+
st.sidebar.header("Word Cloud")
|
67 |
+
word_sentiment = st.sidebar.radio('Display word cloud for what sentiment?',('positive', 'neutral','negative'))
|
68 |
+
|
69 |
+
if not st.sidebar.checkbox("Close", True, key='3'):
|
70 |
+
st.header('Word cloud for %s sentiment' % (word_sentiment))
|
71 |
+
df = data[data['airline_sentiment']==word_sentiment]
|
72 |
+
words = ' '.join(df['text'])
|
73 |
+
processed_words = ' '.join([word for word in words.split() if 'http' not in word and not word.startswith('@') and word !='RT'])
|
74 |
+
wordcloud = WordCloud(stopwords=STOPWORDS,
|
75 |
+
background_color='white', height=640, width=800).generate(processed_words)
|
76 |
+
plt.imshow(wordcloud)
|
77 |
+
plt.xticks([])
|
78 |
+
plt.yticks([])
|
79 |
+
st.pyplot()
|
80 |
+
|
81 |
+
|
82 |
+
if __name__ == '__main__':
|
83 |
+
run()
|
84 |
+
|