File size: 18,296 Bytes
733c188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
{
 "cells": [
  {
   "cell_type": "raw",
   "metadata": {},
   "source": [
    "---\n",
    "title: 02 PyTorch Hello World!\n",
    "description: Build a simple neural network and train it\n",
    "---"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a href=\"https://colab.research.google.com/drive/1ac0K9_aa46c77XEeYtaMAfSOfmH1Bl9L?usp=sharing\" target=\"_blank\"><img align=\"left\" alt=\"Colab\" title=\"Open in Colab\" src=\"https://colab.research.google.com/assets/colab-badge.svg\"></a>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "H7gQFbUxOQtb"
   },
   "source": [
    "# A First Shot at Deep Learning with PyTorch\n",
    "\n",
    "In this notebook, we are going to take a baby step into the world of deep learning using PyTorch. There are a ton of notebooks out there that teach you the fundamentals of deep learning and PyTorch, so here the idea is to give you some basic introduction to deep learning and PyTorch at a very high level. Therefore, this notebook is targeting beginners but it can also serve as a review for more experienced developers.\n",
    "\n",
    "After completion of this notebook, you are expected to know the basic components of training a basic neural network with PyTorch. I have also left a couple of exercises towards the end with the intention of encouraging more research and practise of your deep learning skills. \n",
    "\n",
    "---\n",
    "\n",
    "**Author:** Elvis Saravia([Twitter](https://twitter.com/omarsar0) | [LinkedIn](https://www.linkedin.com/in/omarsar/))\n",
    "\n",
    "**Complete Code Walkthrough:** [Blog post](https://medium.com/dair-ai/a-first-shot-at-deep-learning-with-pytorch-4a8252d30c75)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "CkzttrQCwaSQ"
   },
   "source": [
    "## Importing the libraries\n",
    "\n",
    "Like with any other programming exercise, the first step is to import the necessary libraries. As we are going to be using Google Colab to program our neural network, we need to install and import the necessary PyTorch libraries."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "FuhJIaeXO2W9",
    "outputId": "bf494471-115e-45a8-c7cb-15a26f12154a"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1.10.0+cu111\n"
     ]
    }
   ],
   "source": [
    "## The usual imports\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "\n",
    "## print out the pytorch version used\n",
    "print(torch.__version__)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "0a2C_nneO_wp"
   },
   "source": [
    "## The Neural Network\n",
    "\n",
    "![alt text](https://drive.google.com/uc?export=view&id=1Lpi4VPBfAV3JkOLopcsGK4L8dyxmPF1b)\n",
    "\n",
    "Before building and training a neural network the first step is to process and prepare the data. In this notebook, we are going to use syntethic data (i.e., fake data) so we won't be using any real world data. \n",
    "\n",
    "For the sake of simplicity, we are going to use the following input and output pairs converted to tensors, which is how data is typically represented in the world of deep learning. The x values represent the input of dimension `(6,1)` and the y values represent the output of similar dimension. The example is taken from this [tutorial](https://github.com/lmoroney/dlaicourse/blob/master/Course%201%20-%20Part%202%20-%20Lesson%202%20-%20Notebook.ipynb). \n",
    "\n",
    "The objective of the neural network model that we are going to build and train is to automatically learn patterns that better characterize the relationship between the `x` and `y` values. Essentially, the model learns the relationship that exists between inputs and outputs which can then be used to predict the corresponding `y` value for any given input `x`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "JWFtgUX85iwO"
   },
   "outputs": [],
   "source": [
    "## our data in tensor form\n",
    "x = torch.tensor([[-1.0],  [0.0], [1.0], [2.0], [3.0], [4.0]], dtype=torch.float)\n",
    "y = torch.tensor([[-3.0], [-1.0], [1.0], [3.0], [5.0], [7.0]], dtype=torch.float)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "NcQUjR_95z5J",
    "outputId": "6db5df38-6f9d-454e-87d6-cee0c29dccb3"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "torch.Size([6, 1])"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "## print size of the input tensor\n",
    "x.size()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "9CJXO5WX1QtQ"
   },
   "source": [
    "## The Neural Network Components\n",
    "As said earlier, we are going to first define and build out the components of our neural network before training the model.\n",
    "\n",
    "### Model\n",
    "\n",
    "Typically, when building a neural network model, we define the layers and weights which form the basic components of the model. Below we show an example of how to define a hidden layer named `layer1` with size `(1, 1)`. For the purpose of this tutorial, we won't explicitly define the `weights` and allow the built-in functions provided by PyTorch to handle that part for us. By the way, the `nn.Linear(...)` function applies a linear transformation ($y = xA^T + b$) to the data that was provided as its input. We ignore the bias for now by setting `bias=False`.\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "N1Ii5JRz3Jud"
   },
   "outputs": [],
   "source": [
    "## Neural network with 1 hidden layer\n",
    "layer1 = nn.Linear(1,1, bias=False)\n",
    "model = nn.Sequential(layer1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "9HTWYD4aMBXQ"
   },
   "source": [
    "### Loss and Optimizer\n",
    "The loss function, `nn.MSELoss()`, is in charge of letting the model know how good it has learned the relationship between the input and output. The optimizer (in this case an `SGD`) primary role is to minimize or lower that loss value as it tunes its weights."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "3hglFpejArxx"
   },
   "outputs": [],
   "source": [
    "## loss function\n",
    "criterion = nn.MSELoss()\n",
    "\n",
    "## optimizer algorithm\n",
    "optimizer = torch.optim.SGD(model.parameters(), lr=0.01)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "FKj6jvZTUtGh"
   },
   "source": [
    "## Training the Neural Network Model\n",
    "We have all the components we need to train our model. Below is the code used to train our model. \n",
    "\n",
    "In simple terms, we train the model by feeding it the input and output pairs for a couple of rounds (i.e., `epoch`). After a series of forward and backward steps, the model somewhat learns the relationship between x and y values. This is notable by the decrease in the computed `loss`. For a more detailed explanation of this code check out this [tutorial](https://medium.com/dair-ai/a-simple-neural-network-from-scratch-with-pytorch-and-google-colab-c7f3830618e0). "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "JeOr9i-aBzRv",
    "outputId": "299a0b60-a64c-46c4-d031-8aaf1cacbff9"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch: 0 | Loss: 10.1346\n",
      "Epoch: 1 | Loss: 8.2589\n",
      "Epoch: 2 | Loss: 6.7509\n",
      "Epoch: 3 | Loss: 5.5385\n",
      "Epoch: 4 | Loss: 4.5636\n",
      "Epoch: 5 | Loss: 3.7798\n",
      "Epoch: 6 | Loss: 3.1497\n",
      "Epoch: 7 | Loss: 2.6430\n",
      "Epoch: 8 | Loss: 2.2356\n",
      "Epoch: 9 | Loss: 1.9081\n",
      "Epoch: 10 | Loss: 1.6448\n",
      "Epoch: 11 | Loss: 1.4331\n",
      "Epoch: 12 | Loss: 1.2628\n",
      "Epoch: 13 | Loss: 1.1260\n",
      "Epoch: 14 | Loss: 1.0159\n",
      "Epoch: 15 | Loss: 0.9275\n",
      "Epoch: 16 | Loss: 0.8563\n",
      "Epoch: 17 | Loss: 0.7991\n",
      "Epoch: 18 | Loss: 0.7532\n",
      "Epoch: 19 | Loss: 0.7162\n",
      "Epoch: 20 | Loss: 0.6865\n",
      "Epoch: 21 | Loss: 0.6626\n",
      "Epoch: 22 | Loss: 0.6433\n",
      "Epoch: 23 | Loss: 0.6279\n",
      "Epoch: 24 | Loss: 0.6155\n",
      "Epoch: 25 | Loss: 0.6055\n",
      "Epoch: 26 | Loss: 0.5975\n",
      "Epoch: 27 | Loss: 0.5910\n",
      "Epoch: 28 | Loss: 0.5858\n",
      "Epoch: 29 | Loss: 0.5816\n",
      "Epoch: 30 | Loss: 0.5783\n",
      "Epoch: 31 | Loss: 0.5756\n",
      "Epoch: 32 | Loss: 0.5734\n",
      "Epoch: 33 | Loss: 0.5717\n",
      "Epoch: 34 | Loss: 0.5703\n",
      "Epoch: 35 | Loss: 0.5691\n",
      "Epoch: 36 | Loss: 0.5682\n",
      "Epoch: 37 | Loss: 0.5675\n",
      "Epoch: 38 | Loss: 0.5669\n",
      "Epoch: 39 | Loss: 0.5664\n",
      "Epoch: 40 | Loss: 0.5661\n",
      "Epoch: 41 | Loss: 0.5658\n",
      "Epoch: 42 | Loss: 0.5655\n",
      "Epoch: 43 | Loss: 0.5653\n",
      "Epoch: 44 | Loss: 0.5652\n",
      "Epoch: 45 | Loss: 0.5650\n",
      "Epoch: 46 | Loss: 0.5649\n",
      "Epoch: 47 | Loss: 0.5649\n",
      "Epoch: 48 | Loss: 0.5648\n",
      "Epoch: 49 | Loss: 0.5647\n",
      "Epoch: 50 | Loss: 0.5647\n",
      "Epoch: 51 | Loss: 0.5647\n",
      "Epoch: 52 | Loss: 0.5646\n",
      "Epoch: 53 | Loss: 0.5646\n",
      "Epoch: 54 | Loss: 0.5646\n",
      "Epoch: 55 | Loss: 0.5646\n",
      "Epoch: 56 | Loss: 0.5646\n",
      "Epoch: 57 | Loss: 0.5646\n",
      "Epoch: 58 | Loss: 0.5645\n",
      "Epoch: 59 | Loss: 0.5645\n",
      "Epoch: 60 | Loss: 0.5645\n",
      "Epoch: 61 | Loss: 0.5645\n",
      "Epoch: 62 | Loss: 0.5645\n",
      "Epoch: 63 | Loss: 0.5645\n",
      "Epoch: 64 | Loss: 0.5645\n",
      "Epoch: 65 | Loss: 0.5645\n",
      "Epoch: 66 | Loss: 0.5645\n",
      "Epoch: 67 | Loss: 0.5645\n",
      "Epoch: 68 | Loss: 0.5645\n",
      "Epoch: 69 | Loss: 0.5645\n",
      "Epoch: 70 | Loss: 0.5645\n",
      "Epoch: 71 | Loss: 0.5645\n",
      "Epoch: 72 | Loss: 0.5645\n",
      "Epoch: 73 | Loss: 0.5645\n",
      "Epoch: 74 | Loss: 0.5645\n",
      "Epoch: 75 | Loss: 0.5645\n",
      "Epoch: 76 | Loss: 0.5645\n",
      "Epoch: 77 | Loss: 0.5645\n",
      "Epoch: 78 | Loss: 0.5645\n",
      "Epoch: 79 | Loss: 0.5645\n",
      "Epoch: 80 | Loss: 0.5645\n",
      "Epoch: 81 | Loss: 0.5645\n",
      "Epoch: 82 | Loss: 0.5645\n",
      "Epoch: 83 | Loss: 0.5645\n",
      "Epoch: 84 | Loss: 0.5645\n",
      "Epoch: 85 | Loss: 0.5645\n",
      "Epoch: 86 | Loss: 0.5645\n",
      "Epoch: 87 | Loss: 0.5645\n",
      "Epoch: 88 | Loss: 0.5645\n",
      "Epoch: 89 | Loss: 0.5645\n",
      "Epoch: 90 | Loss: 0.5645\n",
      "Epoch: 91 | Loss: 0.5645\n",
      "Epoch: 92 | Loss: 0.5645\n",
      "Epoch: 93 | Loss: 0.5645\n",
      "Epoch: 94 | Loss: 0.5645\n",
      "Epoch: 95 | Loss: 0.5645\n",
      "Epoch: 96 | Loss: 0.5645\n",
      "Epoch: 97 | Loss: 0.5645\n",
      "Epoch: 98 | Loss: 0.5645\n",
      "Epoch: 99 | Loss: 0.5645\n",
      "Epoch: 100 | Loss: 0.5645\n",
      "Epoch: 101 | Loss: 0.5645\n",
      "Epoch: 102 | Loss: 0.5645\n",
      "Epoch: 103 | Loss: 0.5645\n",
      "Epoch: 104 | Loss: 0.5645\n",
      "Epoch: 105 | Loss: 0.5645\n",
      "Epoch: 106 | Loss: 0.5645\n",
      "Epoch: 107 | Loss: 0.5645\n",
      "Epoch: 108 | Loss: 0.5645\n",
      "Epoch: 109 | Loss: 0.5645\n",
      "Epoch: 110 | Loss: 0.5645\n",
      "Epoch: 111 | Loss: 0.5645\n",
      "Epoch: 112 | Loss: 0.5645\n",
      "Epoch: 113 | Loss: 0.5645\n",
      "Epoch: 114 | Loss: 0.5645\n",
      "Epoch: 115 | Loss: 0.5645\n",
      "Epoch: 116 | Loss: 0.5645\n",
      "Epoch: 117 | Loss: 0.5645\n",
      "Epoch: 118 | Loss: 0.5645\n",
      "Epoch: 119 | Loss: 0.5645\n",
      "Epoch: 120 | Loss: 0.5645\n",
      "Epoch: 121 | Loss: 0.5645\n",
      "Epoch: 122 | Loss: 0.5645\n",
      "Epoch: 123 | Loss: 0.5645\n",
      "Epoch: 124 | Loss: 0.5645\n",
      "Epoch: 125 | Loss: 0.5645\n",
      "Epoch: 126 | Loss: 0.5645\n",
      "Epoch: 127 | Loss: 0.5645\n",
      "Epoch: 128 | Loss: 0.5645\n",
      "Epoch: 129 | Loss: 0.5645\n",
      "Epoch: 130 | Loss: 0.5645\n",
      "Epoch: 131 | Loss: 0.5645\n",
      "Epoch: 132 | Loss: 0.5645\n",
      "Epoch: 133 | Loss: 0.5645\n",
      "Epoch: 134 | Loss: 0.5645\n",
      "Epoch: 135 | Loss: 0.5645\n",
      "Epoch: 136 | Loss: 0.5645\n",
      "Epoch: 137 | Loss: 0.5645\n",
      "Epoch: 138 | Loss: 0.5645\n",
      "Epoch: 139 | Loss: 0.5645\n",
      "Epoch: 140 | Loss: 0.5645\n",
      "Epoch: 141 | Loss: 0.5645\n",
      "Epoch: 142 | Loss: 0.5645\n",
      "Epoch: 143 | Loss: 0.5645\n",
      "Epoch: 144 | Loss: 0.5645\n",
      "Epoch: 145 | Loss: 0.5645\n",
      "Epoch: 146 | Loss: 0.5645\n",
      "Epoch: 147 | Loss: 0.5645\n",
      "Epoch: 148 | Loss: 0.5645\n",
      "Epoch: 149 | Loss: 0.5645\n"
     ]
    }
   ],
   "source": [
    "## training\n",
    "for ITER in range(150):\n",
    "    model = model.train()\n",
    "\n",
    "    ## forward\n",
    "    output = model(x)\n",
    "    loss = criterion(output, y)\n",
    "    optimizer.zero_grad()\n",
    "\n",
    "    ## backward + update model params \n",
    "    loss.backward()\n",
    "    optimizer.step()\n",
    "\n",
    "    model.eval()\n",
    "    print('Epoch: %d | Loss: %.4f' %(ITER, loss.detach().item()))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "Bp50Q7J0Xkiw"
   },
   "source": [
    "## Testing the Model\n",
    "After training the model we have the ability to test the model predictive capability by passing it an input. Below is a simple example of how you could achieve this with our model. The result we obtained aligns with the results obtained in this [notebook](https://github.com/lmoroney/dlaicourse/blob/master/Course%201%20-%20Part%202%20-%20Lesson%202%20-%20Notebook.ipynb), which inspired this entire tutorial. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "V1odfZpGFoBi",
    "outputId": "a447b232-729e-4ccf-adc2-5aeaf79cc2ea"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "17.096769332885742\n"
     ]
    }
   ],
   "source": [
    "## test the model\n",
    "sample = torch.tensor([10.0], dtype=torch.float)\n",
    "predicted = model(sample)\n",
    "print(predicted.detach().item())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "ozX4V1GhPLyr"
   },
   "source": [
    "## Final Words\n",
    "\n",
    "Congratulations! In this tutorial you learned how to train a simple neural network using PyTorch. You also learned about the basic components that make up a neural network model such as the linear transformation layer, optimizer, and loss function. We then trained the model and tested its predictive capabilities. You are well on your way to become more knowledgeable about deep learning and PyTorch. I have provided a bunch of references below if you are interested in practising and learning more. \n",
    "\n",
    "*I would like to thank Laurence Moroney for his excellent [tutorial](https://github.com/lmoroney/dlaicourse/blob/master/Course%201%20-%20Part%202%20-%20Lesson%202%20-%20Notebook.ipynb) which I used as an inspiration for this tutorial.*"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "LAABGiMHeDOr"
   },
   "source": [
    "## Exercises\n",
    "- Add more examples in the input and output tensors. In addition, try to change the dimensions of the data, say by adding an extra value in each array. What needs to be changed to successfully train the network with the new data?\n",
    "- The model converged really fast, which means it learned the relationship between x and y values after a couple of iterations. Do you think it makes sense to continue training? How would you automate the process of stopping the training after the model loss doesn't subtantially change?\n",
    "- In our example, we used a single hidden layer. Try to take a look at the PyTorch documentation to figure out what you need to do to get a model with more layers. What happens if you add more hidden layers?\n",
    "- We did not discuss the learning rate (`lr-0.001`) and the optimizer in great detail. Check out the [PyTorch documentation](https://pytorch.org/docs/stable/optim.html) to learn more about what other optimizers you can use.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "4-o4w9vpPHZz"
   },
   "source": [
    "## References\n",
    "- [The Hello World of Deep Learning with Neural Networks](https://github.com/lmoroney/dlaicourse/blob/master/Course%201%20-%20Part%202%20-%20Lesson%202%20-%20Notebook.ipynb)\n",
    "- [A Simple Neural Network from Scratch with PyTorch and Google Colab](https://medium.com/dair-ai/a-simple-neural-network-from-scratch-with-pytorch-and-google-colab-c7f3830618e0?source=collection_category---4------1-----------------------)\n",
    "- [PyTorch Official Docs](https://pytorch.org/docs/stable/nn.html)\n",
    "- [PyTorch 1.2 Quickstart with Google Colab](https://medium.com/dair-ai/pytorch-1-2-quickstart-with-google-colab-6690a30c38d)\n",
    "- [A Gentle Intoduction to PyTorch](https://medium.com/dair-ai/pytorch-1-2-introduction-guide-f6fa9bb7597c)"
   ]
  }
 ],
 "metadata": {
  "colab": {
   "name": "PyTorch Hello World.ipynb",
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}