File size: 9,320 Bytes
733c188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
{
 "cells": [
  {
   "cell_type": "raw",
   "metadata": {},
   "source": [
    "---\n",
    "title: 10 Deep Continuous Bag of Words (Deep CBOW) Text Classifier\n",
    "description: Build a deep continuous bag of words text classifier\n",
    "---"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a href=\"https://colab.research.google.com/drive/18yz-qvMQYIYZt1BLihSJrKQZXh8zjH8x?usp=sharing\" target=\"_blank\"><img align=\"left\" alt=\"Colab\" title=\"Open in Colab\" src=\"https://colab.research.google.com/assets/colab-badge.svg\"></a>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "B8m-hOTiIQdz"
   },
   "source": [
    "# Deep Continuous Bag of Words (Deep CBOW) Text Classifier\n",
    "\n",
    "The code below implements a continuous bag of words text classifier.\n",
    "- We tokenize the text, create a vocabulary and encode each piece of text in the dataset\n",
    "- We create embeddings for inputs and sum them together\n",
    "- The resulting vector is fed to hidden neural network, which generates a new vector that is multiplied to a weights matrix\n",
    "- We then add the bias and obtain scores\n",
    "- The scores are applied a softmax to generate probabilities which are used for the final classification\n",
    "\n",
    "The code used in this notebook was inspired by code from the [official repo](https://github.com/neubig/nn4nlp-code) used in the [CMU Neural Networks for NLP class](http://www.phontron.com/class/nn4nlp2021/schedule.html) by [Graham Neubig](http://www.phontron.com/index.php). \n",
    "\n",
    "![img txt](https://github.com/dair-ai/ML-Notebooks/blob/main/img/deep_cbow.png?raw=true)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "nfqATQzlIJ-k"
   },
   "outputs": [],
   "source": [
    "import torch\n",
    "import random\n",
    "import torch.nn as nn"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "-4qY1e2XNiri"
   },
   "outputs": [],
   "source": [
    "%%capture\n",
    "\n",
    "# download the files\n",
    "!wget https://raw.githubusercontent.com/neubig/nn4nlp-code/master/data/classes/dev.txt\n",
    "!wget https://raw.githubusercontent.com/neubig/nn4nlp-code/master/data/classes/test.txt\n",
    "!wget https://raw.githubusercontent.com/neubig/nn4nlp-code/master/data/classes/train.txt\n",
    "\n",
    "# create the data folders\n",
    "!mkdir data data/classes\n",
    "!cp dev.txt data/classes\n",
    "!cp test.txt data/classes\n",
    "!cp train.txt data/classes"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "6Vh6stZfNt7F"
   },
   "source": [
    "## Read and Process the Data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "ZjrwnvlyNsG2"
   },
   "outputs": [],
   "source": [
    "# function to read in data, process each line and split columns by \" ||| \"\n",
    "def read_data(filename):\n",
    "    data = []\n",
    "    with open(filename, 'r') as f:\n",
    "        for line in f:\n",
    "            line = line.lower().strip()\n",
    "            line = line.split(' ||| ')\n",
    "            data.append(line)\n",
    "    return data\n",
    "\n",
    "train_data = read_data('data/classes/train.txt')\n",
    "test_data = read_data('data/classes/test.txt')\n",
    "\n",
    "# creating the word and tag indices\n",
    "word_to_index = {}\n",
    "word_to_index[\"<unk>\"] = len(word_to_index) # add <UNK> to dictionary\n",
    "tag_to_index = {}\n",
    "\n",
    "# create word to index dictionary and tag to index dictionary from data\n",
    "def create_dict(data, check_unk=False):\n",
    "    for line in data:\n",
    "        for word in line[1].split(\" \"):\n",
    "            if check_unk == False:\n",
    "                if word not in word_to_index:\n",
    "                    word_to_index[word] = len(word_to_index)\n",
    "            else:\n",
    "                if word not in word_to_index:\n",
    "                    word_to_index[word] = word_to_index[\"<unk>\"]\n",
    "\n",
    "        if line[0] not in tag_to_index:\n",
    "            tag_to_index[line[0]] = len(tag_to_index)\n",
    "\n",
    "create_dict(train_data)\n",
    "create_dict(test_data, check_unk=True)\n",
    "\n",
    "# create word and tag tensors from data\n",
    "def create_tensor(data):\n",
    "    for line in data:\n",
    "        yield([word_to_index[word] for word in line[1].split(\" \")], tag_to_index[line[0]])\n",
    "\n",
    "train_data = list(create_tensor(train_data))\n",
    "test_data = list(create_tensor(test_data))\n",
    "\n",
    "number_of_words = len(word_to_index)\n",
    "number_of_tags = len(tag_to_index)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "sSoomtjuN4HD"
   },
   "source": [
    "## Model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "j_-GavImNz6n"
   },
   "outputs": [],
   "source": [
    "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
    "\n",
    "# create a simple neural network with embedding layer, bias, and xavier initialization\n",
    "class DeepCBoW(nn.Module):\n",
    "    def __init__(self, nwords, ntags, hidden_size, num_layers, emb_size):\n",
    "        super(DeepCBoW, self).__init__()\n",
    "\n",
    "        self.num_layers = num_layers\n",
    "\n",
    "        # layers\n",
    "        self.embedding = nn.Embedding(nwords, emb_size)\n",
    "        self.linears = nn.ModuleList([nn.Linear(emb_size if i ==0 else hidden_size, hidden_size) \\\n",
    "            for i in range(num_layers)])\n",
    "\n",
    "        # use xavier initialization for weights\n",
    "        nn.init.xavier_uniform_(self.embedding.weight)\n",
    "        for i in range(self.num_layers):\n",
    "            nn.init.xavier_uniform_(self.linears[i].weight)\n",
    "\n",
    "        # output layer\n",
    "        self.output_layer = nn.Linear(hidden_size, ntags)\n",
    "\n",
    "    def forward(self, x):\n",
    "        emb = self.embedding(x) # seq x emb_size\n",
    "        emb_sum = torch.sum(emb, dim=0) # emb_size\n",
    "        h = emb_sum.view(1, -1) # reshape to (1, emb_size)\n",
    "        for i in range(self.num_layers):\n",
    "            h = torch.tanh(self.linears[i](h))\n",
    "        out = self.output_layer(h) # 1 x ntags\n",
    "        return out\n",
    "\n",
    "HIDDEN_SIZE = 64\n",
    "NUM_LAYERS = 2 # hidden layers\n",
    "EMB_SIZE = 64\n",
    "model = DeepCBoW(number_of_words, number_of_tags, HIDDEN_SIZE, NUM_LAYERS, EMB_SIZE).to(device)\n",
    "criterion = nn.CrossEntropyLoss()\n",
    "optimizer = torch.optim.Adam(model.parameters())\n",
    "type = torch.LongTensor\n",
    "\n",
    "if torch.cuda.is_available():\n",
    "    model.to(device)\n",
    "    type = torch.cuda.LongTensor"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "tMqill6ZOLPu"
   },
   "source": [
    "## Model Training"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "BkY11eyXOIOY"
   },
   "outputs": [],
   "source": [
    "# perform training of the Bow model\n",
    "\n",
    "for epoch in range(10):\n",
    "    # perform training\n",
    "    model.train()\n",
    "    random.shuffle(train_data)\n",
    "    total_loss = 0.0\n",
    "    train_correct = 0\n",
    "    for sentence, tag in train_data:\n",
    "        sentence = torch.tensor(sentence).type(type)\n",
    "        tag = torch.tensor([tag]).type(type)\n",
    "        output = model(sentence)\n",
    "        predicted = torch.argmax(output.data.detach()).item()\n",
    "        \n",
    "        loss = criterion(output, tag)\n",
    "        total_loss += loss.item()\n",
    "\n",
    "        optimizer.zero_grad()\n",
    "        loss.backward()\n",
    "        optimizer.step()\n",
    "\n",
    "        if predicted == tag: train_correct+=1\n",
    "\n",
    "    # perform testing of the model\n",
    "    model.eval()\n",
    "    test_correct = 0\n",
    "    for sentence, tag in test_data:\n",
    "        sentence = torch.tensor(sentence).type(type)\n",
    "        output = model(sentence)\n",
    "        predicted = torch.argmax(output.data.detach()).item()\n",
    "        if predicted == tag: test_correct += 1\n",
    "    \n",
    "    # print model performance results\n",
    "    log = f'epoch: {epoch+1} | ' \\\n",
    "        f'train loss/sent: {total_loss/len(train_data):.4f} | ' \\\n",
    "        f'train accuracy: {train_correct/len(train_data):.4f} | ' \\\n",
    "        f'test accuracy: {test_correct/len(test_data):.4f}'\n",
    "    \n",
    "    print(log)"
   ]
  }
 ],
 "metadata": {
  "accelerator": "GPU",
  "colab": {
   "name": "deep-cbow.ipynb",
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}