Spaces:
Runtime error
Runtime error
File size: 51,315 Bytes
733c188 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 |
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"title: 11 Introduction to GNNs\n",
"description: Introduction to Graph Neural Networks. Applies basic GCN to Cora dataset for node classification.\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a href=\"https://colab.research.google.com/drive/1d0jLDwgNBtjBVQOFe8lO_1WrqTVeVZx9?usp=sharing\" target=\"_blank\"><img align=\"left\" alt=\"Colab\" title=\"Open in Colab\" src=\"https://colab.research.google.com/assets/colab-badge.svg\"></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "sjX6CPJFA52R"
},
"source": [
"## Introduction to GNNs with PyTorch Geometric\n",
"\n",
"In this short notebook, the goal is to provide a introductory guide to get started with Graph Neural Networks using the popular library called [PyTorch Geometric](https://pytorch-geometric.readthedocs.io/en/latest/index.html). PyTorch Geometric is a PyTorch based libary hence we will be using PyTorch in this tutorial. \n",
"\n",
"The code used in this tutorial has been adapted from their official [examples](https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html). I have incorporated a bit more beginner-friendly guidance and kept it minimal."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "mwTz9zaHC7YA",
"outputId": "ce24d6a4-907f-4094-eb98-bc6ea0520e34"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"11.1\n"
]
}
],
"source": [
"# Find the CUDA version PyTorch was installed with\n",
"!python -c \"import torch; print(torch.version.cuda)\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "2jo0YpV0DLDW",
"outputId": "238637c0-e60b-42fc-e7de-86f47f39ec4f"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.10.0+cu111\n"
]
}
],
"source": [
"# PyTorch version\n",
"!python -c \"import torch; print(torch.__version__)\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "P-VLTfxzEmLu"
},
"source": [
"Install the follow packages but make sure to install the right version below. Find more instructions [here](https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html) if you get lost. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "fLbSOIkaDRe4",
"outputId": "b196161e-d1bf-4595-ccaa-49747f3ec00c"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Looking in links: https://data.pyg.org/whl/torch-1.10.0+cu111.html\n",
"Collecting torch-scatter\n",
" Downloading https://data.pyg.org/whl/torch-1.10.0%2Bcu113/torch_scatter-2.0.9-cp37-cp37m-linux_x86_64.whl (7.9 MB)\n",
"\u001b[K |████████████████████████████████| 7.9 MB 2.5 MB/s \n",
"\u001b[?25hInstalling collected packages: torch-scatter\n",
"Successfully installed torch-scatter-2.0.9\n"
]
}
],
"source": [
"!pip install torch-scatter -f https://data.pyg.org/whl/torch-1.10.0+cu111.html"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Q-wRLXE_DkZF",
"outputId": "cb249940-3c85-4572-eb41-3d3ef2a5407d"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Looking in links: https://data.pyg.org/whl/torch-1.10.0+cu111.html\n",
"Collecting torch-sparse\n",
" Downloading https://data.pyg.org/whl/torch-1.10.0%2Bcu113/torch_sparse-0.6.12-cp37-cp37m-linux_x86_64.whl (3.5 MB)\n",
"\u001b[K |████████████████████████████████| 3.5 MB 2.8 MB/s \n",
"\u001b[?25hRequirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from torch-sparse) (1.4.1)\n",
"Requirement already satisfied: numpy>=1.13.3 in /usr/local/lib/python3.7/dist-packages (from scipy->torch-sparse) (1.19.5)\n",
"Installing collected packages: torch-sparse\n",
"Successfully installed torch-sparse-0.6.12\n"
]
}
],
"source": [
"!pip install torch-sparse -f https://data.pyg.org/whl/torch-1.10.0+cu111.html"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "lAobCDu6Dppo",
"outputId": "d7675ad2-6b5f-4162-caa8-13fa658d1793"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting torch-geometric\n",
" Downloading torch_geometric-2.0.3.tar.gz (370 kB)\n",
"\u001b[K |████████████████████████████████| 370 kB 5.3 MB/s \n",
"\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from torch-geometric) (1.19.5)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from torch-geometric) (4.62.3)\n",
"Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from torch-geometric) (1.4.1)\n",
"Requirement already satisfied: networkx in /usr/local/lib/python3.7/dist-packages (from torch-geometric) (2.6.3)\n",
"Requirement already satisfied: scikit-learn in /usr/local/lib/python3.7/dist-packages (from torch-geometric) (1.0.2)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from torch-geometric) (2.23.0)\n",
"Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from torch-geometric) (1.3.5)\n",
"Collecting rdflib\n",
" Downloading rdflib-6.1.1-py3-none-any.whl (482 kB)\n",
"\u001b[K |████████████████████████████████| 482 kB 48.3 MB/s \n",
"\u001b[?25hRequirement already satisfied: googledrivedownloader in /usr/local/lib/python3.7/dist-packages (from torch-geometric) (0.4)\n",
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.7/dist-packages (from torch-geometric) (2.11.3)\n",
"Requirement already satisfied: pyparsing in /usr/local/lib/python3.7/dist-packages (from torch-geometric) (3.0.7)\n",
"Collecting yacs\n",
" Downloading yacs-0.1.8-py3-none-any.whl (14 kB)\n",
"Requirement already satisfied: PyYAML in /usr/local/lib/python3.7/dist-packages (from torch-geometric) (3.13)\n",
"Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-packages (from jinja2->torch-geometric) (2.0.1)\n",
"Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas->torch-geometric) (2018.9)\n",
"Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas->torch-geometric) (2.8.2)\n",
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas->torch-geometric) (1.15.0)\n",
"Collecting isodate\n",
" Downloading isodate-0.6.1-py2.py3-none-any.whl (41 kB)\n",
"\u001b[K |████████████████████████████████| 41 kB 486 kB/s \n",
"\u001b[?25hRequirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from rdflib->torch-geometric) (4.10.1)\n",
"Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (from rdflib->torch-geometric) (57.4.0)\n",
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->rdflib->torch-geometric) (3.7.0)\n",
"Requirement already satisfied: typing-extensions>=3.6.4 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->rdflib->torch-geometric) (3.10.0.2)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->torch-geometric) (2021.10.8)\n",
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->torch-geometric) (2.10)\n",
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->torch-geometric) (3.0.4)\n",
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->torch-geometric) (1.24.3)\n",
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->torch-geometric) (3.1.0)\n",
"Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->torch-geometric) (1.1.0)\n",
"Building wheels for collected packages: torch-geometric\n",
" Building wheel for torch-geometric (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for torch-geometric: filename=torch_geometric-2.0.3-py3-none-any.whl size=581968 sha256=eee568026f004ea2d960222f33768328b638194617a05429f1e10e5c019857d0\n",
" Stored in directory: /root/.cache/pip/wheels/c3/2a/58/87ce0508964d4def1aafb92750c4f3ac77038efd1b9a89dcf5\n",
"Successfully built torch-geometric\n",
"Installing collected packages: isodate, yacs, rdflib, torch-geometric\n",
"Successfully installed isodate-0.6.1 rdflib-6.1.1 torch-geometric-2.0.3 yacs-0.1.8\n"
]
}
],
"source": [
"!pip install torch-geometric"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "GNfiSdoUFaoF"
},
"source": [
"## Getting Started"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "D6LCvEr7CGF9"
},
"source": [
"Import PyTorch"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "pqrlyFN1AtXI",
"outputId": "850011fd-9eb1-4afc-8ba2-1416f4801c05"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.10.0+cu111\n"
]
}
],
"source": [
"import torch\n",
"\n",
"# print torch version\n",
"print(torch.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "V0xfcmMfCFIH"
},
"source": [
"The great thing about PyTorch Geometric is that it contain useful functionalities to import and load graph related data. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "gfIc5j5YB2_a"
},
"outputs": [],
"source": [
"from torch_geometric.data import Data"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4wuBs1NHEFqn"
},
"source": [
"Now let's create an unweighted and undirected graph with three nodes and four total edges."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "-nLnUIObCTjK",
"outputId": "e4ac0c52-5b42-40be-8f35-091f04fd7a9c"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data(x=[3, 1], edge_index=[2, 4])\n"
]
}
],
"source": [
"# define edge list\n",
"edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]], dtype=torch.long)\n",
"\n",
"# define node features\n",
"x = torch.tensor([[-1], [0], [1]])\n",
"\n",
"# create graph data object\n",
"data = Data(x=x, edge_index=edge_index)\n",
"print(data)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "zV7bQ6tAEQ7H"
},
"source": [
"Our data object `Data` has many useful utility functions to check the properties of the graph. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "idbfqPzoEOPC",
"outputId": "f22248ff-27e6-4cec-ec15-a0c2bbea463c"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4\n"
]
}
],
"source": [
"# check number of edges of the graph\n",
"print(data.num_edges)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "r0lcSstME0MP",
"outputId": "c88ad32a-22aa-4507-8824-ac9961cad74e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3\n"
]
}
],
"source": [
"# check number of nodes of the graph\n",
"print(data.num_nodes)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "yiegwHTyE2AO",
"outputId": "182f22cc-0a52-48b8-d1b6-19c0d926a35f"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1\n"
]
}
],
"source": [
"# check number of features of the graph\n",
"print(data.num_features)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "JNWjhaSeE3Yk",
"outputId": "5a08aebe-a590-4a93-f58f-a0d45d70a2b2"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"False\n"
]
}
],
"source": [
"# check if graph is directed\n",
"print(data.is_directed())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HF-jGPyhFeO6"
},
"source": [
"## Loading Data"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "KBVX6mZfFBxE"
},
"source": [
"Find more fun functions related to graph data [here](https://pytorch-geometric.readthedocs.io/en/latest/modules/data.html#torch_geometric.data.Data). "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "LHvE23mwFJ-3"
},
"source": [
"One of the cool things about the PyTorch Geometric library is that it contains out-of-the-box benchmark datasets that are ready to use and explore. A popular dataset is the Cora dataset that is used for supervised graph node classification. (We will talk about these applications in an upcoming tutorial but for now we will focus on the data itself).\n",
"\n",
"\"The Cora dataset consists of 2708 scientific publications classified into one of seven classes. The citation network consists of 5429 links. Each publication in the dataset is described by a 0/1-valued word vector indicating the absence/presence of the corresponding word from the dictionary. The dictionary consists of 1433 unique words.\" - [Papers with Code](https://paperswithcode.com/dataset/cora)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_8ganBm_FiaQ"
},
"source": [
"Let's load the Cora dataset:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "K3bXwOpoE75M",
"outputId": "ede1ca54-0336-4642-c82f-c1b9c7ed5f3b"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.x\n",
"Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.tx\n",
"Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.allx\n",
"Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.y\n",
"Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.ty\n",
"Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.ally\n",
"Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.graph\n",
"Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.test.index\n",
"Processing...\n",
"Done!\n"
]
}
],
"source": [
"from torch_geometric.datasets import Planetoid\n",
"\n",
"dataset = Planetoid(root='tmp/Cora', name='Cora')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "rQTFnBcuFpLv"
},
"source": [
"Let's check some of the properties of the Cora dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "q9jvXbRXFlGG",
"outputId": "5d22903d-65dd-4e67-b5d4-ccfe682c1157"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of graphs: 1\n",
"Number of features: 1433\n",
"Number of classes: 7\n"
]
}
],
"source": [
"# number of graphs\n",
"print(\"Number of graphs: \", len(dataset))\n",
"\n",
"# number of features\n",
"print(\"Number of features: \", dataset.num_features)\n",
"\n",
"# number of classes\n",
"print(\"Number of classes: \", dataset.num_classes)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "57SX-idAF02R"
},
"source": [
"We can see that this particular graph dataset only contains one graph. Graph data can be very complex and can include multiple graphs depending on the type of data and application. Let's check more feature of the Cora dataset:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "8aOt8HwfFrH_",
"outputId": "b7043e70-aafe-4b7d-c877-83feed65c12b"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of nodes: 2708\n",
"Number of edges: 10556\n",
"Is directed: False\n"
]
}
],
"source": [
"# select the first graph\n",
"data = dataset[0]\n",
"\n",
"# number of nodes\n",
"print(\"Number of nodes: \", data.num_nodes)\n",
"\n",
"# number of edges\n",
"print(\"Number of edges: \", data.num_edges)\n",
"\n",
"# check if directed\n",
"print(\"Is directed: \", data.is_directed())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3XX2MRY4GEQS"
},
"source": [
"You can sample nodes from the graph this way:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "qGJKbv-4GAtY",
"outputId": "8c2a45dc-0b4d-4027-b252-5e48ef787cd6"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Shape of sample nodes: torch.Size([5, 1433])\n"
]
}
],
"source": [
"# sample nodes from the graph\n",
"print(\"Shape of sample nodes: \", data.x[:5].shape)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wV1yBQSvGM9q"
},
"source": [
"We extracted 5 nodes from the graph and checked its shape. You will see that each node has `1433` features."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "oXMY2lU0GWQL"
},
"source": [
"Another great advantage of using PyTorch Geometric to load the Cora data is that it comes pre-processed and ready to use. It also has the splits for training, validation and test which we can directly use for training a GNN.\n",
"\n",
"Let's check some stats for the partitions of the data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "MzITbLkpGIUP",
"outputId": "7a95cc3c-67dc-4050-e22a-556928cefae8"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"# of nodes to train on: 140\n",
"# of nodes to test on: 1000\n",
"# of nodes to validate on: 500\n"
]
}
],
"source": [
"# check training nodes\n",
"print(\"# of nodes to train on: \", data.train_mask.sum().item())\n",
"\n",
"# check test nodes\n",
"print(\"# of nodes to test on: \", data.test_mask.sum().item())\n",
"\n",
"# check validation nodes\n",
"print(\"# of nodes to validate on: \", data.val_mask.sum().item())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7IGOoSfwHjeD"
},
"source": [
"That information is important as it will indicate to our model which nodes to train against and which to test against, and so on.\n",
"\n",
"When training neural networks we train them using batches of data. PyTorch Geometric provides efficient processes to load batches of data.\n",
"\n",
"PyTorch Geometric contains a data loader which is a very popular feature in PyTorch to efficiently load data when training neural networks. "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_SUZUnXzH1zN"
},
"source": [
"So let's try to load the data using the built in `DataLoader`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9tdHl4oZGw_y"
},
"outputs": [],
"source": [
"from torch_geometric.datasets import Planetoid\n",
"from torch_geometric.loader import DataLoader\n",
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "xtJAp4QqIMWw",
"outputId": "8df69cee-89ab-441b-9526-6029b41b6bb8"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"cpu\n"
]
}
],
"source": [
"print(device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "06xbeTJcH8C-"
},
"outputs": [],
"source": [
"dataset = Planetoid(root='tmp/Cora', name='Cora')\n",
"data = dataset[0].to(device)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8MH0lQsYIV0V"
},
"source": [
"Print some quick statistics about the data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "gK7-K6uYH_Iu",
"outputId": "0613a450-caf0-4137-c00f-a45ed8db412f"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"X shape: torch.Size([2708, 1433])\n",
"Edge shape: torch.Size([2, 10556])\n",
"Y shape: torch.Size([2708])\n"
]
}
],
"source": [
"print(\"X shape: \", data.x.shape)\n",
"print(\"Edge shape: \", data.edge_index.shape)\n",
"print(\"Y shape: \", data.y.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TUGNxhBOIuYe"
},
"source": [
"## Model and Training"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "v1pz24blIwnR"
},
"source": [
"Finally, let's define a standard GCN to train on the Cora dataset. The aim is to train a model that gets better at predicting the class of the node."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "dhdMehneI2bn"
},
"source": [
"To keep thins simple we will use the same model definition as used in the [tutorial](https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html) we adpated the code from. Note that we are using the built-in `GCNConv` model but you could easily implement your own (something we will cover in a future tutorial). \n",
"\n",
"The model below uses two `GCNConv` layers. The first layer is followed by a non-linearity `ReLU` and `Dropout`. The result is fed to the second layer on top of which we apply `Softmax` to get distribution over the number of classes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "q0AiwyWrJGhj"
},
"outputs": [],
"source": [
"import torch.nn.functional as F\n",
"from torch_geometric.nn import GCNConv\n",
"\n",
"class GCN(torch.nn.Module):\n",
" def __init__(self):\n",
" super().__init__()\n",
" \"\"\" GCNConv layers \"\"\"\n",
" self.conv1 = GCNConv(data.num_features, 16)\n",
" self.conv2 = GCNConv(16, dataset.num_classes)\n",
"\n",
" def forward(self, data):\n",
" x, edge_index = data.x, data.edge_index\n",
" x = self.conv1(x, edge_index)\n",
" x = F.relu(x)\n",
" x = F.dropout(x, training=self.training)\n",
" x = self.conv2(x, edge_index)\n",
"\n",
" return F.log_softmax(x, dim=1)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Mfob8LS2KezY"
},
"source": [
"Initial model and optimizer"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "GSZL4HS5Kd55"
},
"outputs": [],
"source": [
"model = GCN().to(device)\n",
"optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qpgxKMhmKitV"
},
"source": [
"Define axcuracy function for evaluating performance:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "abnE-XTmKl92"
},
"outputs": [],
"source": [
"# useful function for computing accuracy\n",
"def compute_accuracy(pred_y, y):\n",
" return (pred_y == y).sum()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "26W7sxVsKrGM"
},
"source": [
"And finally we train the model on the trainin nodes for 200 epochs:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "m39ZbE6RKyim",
"outputId": "2e7a3a02-e654-4c11-9c50-d40eab4e6c45"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 10, Loss: 0.8235, Training Acc: 0.9357\n",
"Epoch: 20, Loss: 0.2665, Training Acc: 0.9786\n",
"Epoch: 30, Loss: 0.1056, Training Acc: 0.9857\n",
"Epoch: 40, Loss: 0.0583, Training Acc: 1.0000\n",
"Epoch: 50, Loss: 0.0461, Training Acc: 1.0000\n",
"Epoch: 60, Loss: 0.0388, Training Acc: 0.9929\n",
"Epoch: 70, Loss: 0.0406, Training Acc: 1.0000\n",
"Epoch: 80, Loss: 0.0447, Training Acc: 1.0000\n",
"Epoch: 90, Loss: 0.0571, Training Acc: 0.9929\n",
"Epoch: 100, Loss: 0.0304, Training Acc: 1.0000\n",
"Epoch: 110, Loss: 0.0373, Training Acc: 1.0000\n",
"Epoch: 120, Loss: 0.0268, Training Acc: 1.0000\n",
"Epoch: 130, Loss: 0.0504, Training Acc: 0.9857\n",
"Epoch: 140, Loss: 0.0245, Training Acc: 1.0000\n",
"Epoch: 150, Loss: 0.0294, Training Acc: 1.0000\n",
"Epoch: 160, Loss: 0.0378, Training Acc: 0.9929\n",
"Epoch: 170, Loss: 0.0441, Training Acc: 1.0000\n",
"Epoch: 180, Loss: 0.0223, Training Acc: 1.0000\n",
"Epoch: 190, Loss: 0.0370, Training Acc: 0.9929\n",
"Epoch: 200, Loss: 0.0224, Training Acc: 1.0000\n"
]
}
],
"source": [
"# train the model\n",
"model.train()\n",
"losses = []\n",
"accuracies = []\n",
"for epoch in range(200):\n",
" optimizer.zero_grad()\n",
" out = model(data)\n",
"\n",
" loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])\n",
" correct = compute_accuracy(out.argmax(dim=1)[data.train_mask], data.y[data.train_mask])\n",
" acc = int(correct) / int(data.train_mask.sum())\n",
" losses.append(loss.item())\n",
" accuracies.append(acc)\n",
"\n",
" loss.backward()\n",
" optimizer.step()\n",
" if (epoch+1) % 10 == 0:\n",
" print('Epoch: {}, Loss: {:.4f}, Training Acc: {:.4f}'.format(epoch+1, loss.item(), acc))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 265
},
"id": "bUtwTwemLJGs",
"outputId": "d351364f-f04a-4a75-b3b3-80bd517fe569"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3xUZb748c83kzLpHRIIIaGHEoqhrKjIVRF0FV11xcV63Yuua7nrNvzdu67r9uJdV9druXZd0V1srKKuKIqolCBNCCXUJCQkJKTXyTy/P84kDJCQSTJpM9/365VXZk79njNnvueZ5zznPGKMQSmllO8K6OsAlFJK9SxN9Eop5eM00SullI/TRK+UUj5OE71SSvm4wL4OoC0JCQkmLS2tr8NQSqkBY9OmTceMMYltjeuXiT4tLY3s7Oy+DkMppQYMETnU3jitulFKKR/XYaIXkWEislpEdorIDhG5p41pREQeEZFcEdkmItPcxt0kIntdfzd5ewOUUkqdmSdVNw7gh8aYr0QkEtgkIh8aY3a6TbMAGO36mwk8DswUkTjg50AWYFzzrjDGHPfqViillGpXh4neGFMIFLpeV4lIDjAUcE/0C4EXjfU8hXUiEiMiycD5wIfGmDIAEfkQmA8s8+pWKKUGjKamJvLz86mvr+/rUAYku91OSkoKQUFBHs/TqYuxIpIGTAXWnzJqKJDn9j7fNay94W0tewmwBCA1NbUzYSmlBpD8/HwiIyNJS0tDRPo6nAHFGENpaSn5+fmkp6d7PJ/HF2NFJAJ4HfhPY0xlF2I8I2PMU8aYLGNMVmJimy2ElFI+oL6+nvj4eE3yXSAixMfHd/rXkEeJXkSCsJL834wxb7QxSQEwzO19imtYe8OVUn5Mk3zXdWXfedLqRoBngBxjzP+0M9kK4EZX65tZQIWrbv8DYJ6IxIpILDDPNczrHM1OHludy6d7Snpi8UopNWB5Ukc/G7gB2C4iW1zD/h+QCmCMeQJYCVwC5AK1wC2ucWUi8ktgo2u+B1suzHqbLUB4as1+vpmZzJwxWvWjlGpfREQE1dXVfR1Gr/Gk1c1a4Iy/FVytbb7fzrhngWe7FF0niAjpCeEcOFbT06tSSqkBxafujB2hiV4p1UVbtmxh1qxZZGZmcuWVV3L8uHW7zyOPPML48ePJzMxk0aJFAHz66adMmTKFKVOmMHXqVKqqqvoy9A71y2fddFV6QjhvbC6gttFBWLBPbZpSPukX/9zBziPebcQ3fkgUP79sQqfnu/HGG3n00UeZM2cO999/P7/4xS94+OGH+d3vfseBAwcICQmhvLwcgD/96U889thjzJ49m+rqaux2u1e3wdt8qkSfnhgOwMFjtX0ciVJqIKmoqKC8vJw5c+YAcNNNN7FmzRoAMjMzWbx4MS+//DKBgVYBcvbs2dx777088sgjlJeXtw7vr/p3dJ2UnmAl+gPHahg/JKqPo1FKdaQrJe/e9u6777JmzRr++c9/8utf/5rt27ezdOlSLr30UlauXMns2bP54IMPGDduXF+H2i6fKtGnxbckev+5mq6U6r7o6GhiY2P57LPPAHjppZeYM2cOTqeTvLw85s6dy+9//3sqKiqorq5m3759TJo0iZ/+9KdMnz6dXbt29fEWnJlPlejDQwJJirKzXy/IKqXOoLa2lpSUlNb39957Ly+88AK33347tbW1jBgxgueee47m5mauv/56KioqMMZw9913ExMTw89+9jNWr15NQEAAEyZMYMGCBX24NR3zqUQPaBNLpVSHnE5nm8PXrVt32rC1a9eeNuzRRx/1ekw9yaeqbsC6IKuJXimlTvC9RB8fTnltE+W1jX0dilJK9Qs+l+iHxoYCUFBe18eRKKVU/+BziX5IjJXoC8u1UwOllAJfTPTR1h1qRyq0RK+UUuCDiT4hIoQgm3BES/RKKQX4YKIPCBCSou0UaoleKXUGb731FiLS72928gafS/QAydGhWkevlDqjZcuWcc4557Bs2bIeW0dzc3OPLbszfDLRD4m2a6sbpVS7qqurWbt2Lc888wyvvvoqYCXlH/3oR0ycOJHMzMzWm6I2btzI2WefzeTJk5kxYwZVVVU8//zz3Hnnna3L++Y3v8knn3wCWJ2a/PCHP2Ty5Ml8+eWXPPjgg0yfPp2JEyeyZMkSrO47IDc3lwsvvJDJkyczbdo09u3bx4033shbb73VutzFixfz9ttvd3t7O7wzVkSeBb4JFBtjJrYx/sfAYrflZQCJrt6lDgJVQDPgMMZkdTtiDwyJCeVoZSHNToMtQPumVKrfem8pFG337jKTJsGC351xkrfffpv58+czZswY4uPj2bRpExs2bODgwYNs2bKFwMBAysrKaGxs5Nprr+W1115j+vTpVFZWEhoaesZl19TUMHPmTB566CEAxo8fz/333w/ADTfcwDvvvMNll13G4sWLWbp0KVdeeSX19fU4nU5uvfVW/vznP3PFFVdQUVHBF198wQsvvNDtXeJJif55YH57I40xfzTGTDHGTAHuAz49pbvAua7xvZLkAZJjQnE4DceqG3prlUqpAWTZsmWtnYgsWrSIZcuWsWrVKm677bbWRw7HxcWxe/dukpOTmT59OgBRUVEdPpLYZrNx1VVXtb5fvXo1M2fOZNKkSXz88cfs2LGDqqoqCgoKuPLKKwGw2+2EhYUxZ84c9u7dS0lJCcuWLeOqq67yyiOQPelKcI2IpHm4vOuAnqvw8lBLE8uC8joGR/XvDgGU8msdlLx7QllZGR9//DHbt29HRGhubkZEWpO5JwIDA096Xk59/Ylrgna7HZvN1jr8jjvuIDs7m2HDhvHAAw+cNG1bbrzxRl5++WVeffVVnnvuuU5uXdu8VkcvImFYJf/X3QYb4F8isklElnQw/xIRyRaR7JKSkm7FkhytN00ppdq2fPlybrjhBg4dOsTBgwfJy8sjPT2dyZMn8+STT+JwOADrhDB27FgKCwvZuHEjAFVVVTgcDtLS0tiyZUvrY4w3bNjQ5rpaknpCQgLV1dUsX74cgMjISFJSUlrr4xsaGqittTpMuvnmm3n44YcBq9rHG7x5MfYy4PNTqm3OMcZMAxYA3xeR89qb2RjzlDEmyxiTlZiY2K1AhrbcHatNLJVSp1i2bFlrlUmLq666isLCQlJTU8nMzGTy5Mm88sorBAcH89prr3HXXXcxefJkLrroIurr65k9ezbp6emMHz+eu+++m2nTprW5rpiYGP7jP/6DiRMncvHFF5/0q+Gll17ikUceITMzk7PPPpuioiIABg8eTEZGBrfccovXtllargCfcSKr6uadti7Guk3zJvAPY8wr7Yx/AKg2xvypo/VlZWWZ7OzsDuNqjzGGCT//gGunDxsQPdgo5U9ycnLIyMjo6zD6rdraWiZNmsRXX31FdHR0m9O0tQ9FZFN710K9UqIXkWhgDvC227BwEYlseQ3MA772xvo8iIfkaDtFFVp1o5QaOFatWkVGRgZ33XVXu0m+KzxpXrkMOB9IEJF84OdAEIAx5gnXZFcC/zLGuD8IfjDwpoi0rOcVY8z7Xou8A0nRdooqNdErpQaOCy+8kEOHDnl9uZ60urnOg2mex2qG6T5sPzC5q4F1V1JUKF/sO9ZXq1dKnYExBlchUHWSJ9Xtp/LJO2MBkqPtFFc10Ozs/E5RSvUcu91OaWlplxKWvzPGUFpait3euWbjPtdnbIukaDvNrpumtC29Uv1HSkoK+fn5dLcZtb+y2+0ndWzuCd9N9K7kXlhRr4leqX4kKCiI9PT0vg7Dr/hs1U2S6+7YIm1Lr5Tycz6b6JOjT5TolVLKn/lsoo8LDybYFqBNLJVSfs9nE72IMDg6RG+aUkr5PZ9N9ADJUaFadaOU8ns+neiTou0c1aobpZSf8/lEX1hRrzdmKKX8mm8n+ig7jQ4nx2ub+joUpZTqMz6d6JNb29Jr9Y1Syn/5dKJvvWmqUm+aUkr5L79I9NryRinlz3w60SdGhBAgWnWjlPJvPp3oA20BDIrUnqaUUv7NpxM9aE9TSinVYaIXkWdFpFhE2uzvVUTOF5EKEdni+rvfbdx8EdktIrkistSbgXsqKcqudfRKKb/mSYn+eWB+B9N8ZoyZ4vp7EEBEbMBjwAJgPHCdiIzvTrBdkRRt56gmeqWUH+sw0Rtj1gBlXVj2DCDXGLPfGNMIvAos7MJyuiU52k5Vg4Oqer1pSinln7xVR/8NEdkqIu+JyATXsKFAnts0+a5hbRKRJSKSLSLZ3uxirKWJpT7zRinlr7yR6L8ChhtjJgOPAm91ZSHGmKeMMVnGmKzExEQvhGVp6VKwqKLBa8tUSqmBpNuJ3hhTaYypdr1eCQSJSAJQAAxzmzTFNaxXJUeHAlCoXQoqpfxUtxO9iCSJiLhez3AtsxTYCIwWkXQRCQYWASu6u77OGhQVAuhNU0op/xXY0QQisgw4H0gQkXzg50AQgDHmCeBq4Hsi4gDqgEXGei6wQ0TuBD4AbMCzxpgdPbIVZ2APshEXHkyh1tErpfxUh4neGHNdB+P/Cvy1nXErgZVdC817BkWGUFypdfRKKf/k83fGAsRHBHO8trGvw1BKqT7hF4k+NiyYshpN9Eop/+QXiT4+PJjSaq26UUr5J79I9HHhIVTWO2hqdvZ1KEop1ev8I9FHBANoPb1Syi/5R6IPsxK91tMrpfyRfyT6cFeir9ZEr5TyP36R6ONdVTelWqJXSvkhv0j0rSV6TfRKKT/kF4k+JjQI0ESvlPJPfpHoA20BxIQFaaJXSvklv0j0YFXfaKJXSvkjv0n08eHBlNbo3bFKKf/jN4leS/RKKX/lZ4leOwhXSvkfv0r0x2sbcTpNX4eilFK9qsNELyLPikixiHzdzvjFIrJNRLaLyBciMtlt3EHX8C0iku3NwDsrLjyEZqehsl5L9Uop/+JJif55YP4Zxh8A5hhjJgG/BJ46ZfxcY8wUY0xW10L0jvhwvTtWKeWfOkz0xpg1QNkZxn9hjDnuersOSPFSbF6lnYQrpfyVt+vobwXec3tvgH+JyCYRWXKmGUVkiYhki0h2SUmJl8OC4fHhABwsrfH6spVSqj/rsHNwT4nIXKxEf47b4HOMMQUiMgj4UER2uX4hnMYY8xSuap+srCyvXzFNjrITHBjA4dJaby9aKaX6Na+U6EUkE3gaWGiMKW0ZbowpcP0vBt4EZnhjfV0RECAMiw3lkCZ6pZSf6XaiF5FU4A3gBmPMHrfh4SIS2fIamAe02XKntwyPD+dQmSZ6pZR/6bDqRkSWAecDCSKSD/wcCAIwxjwB3A/EA/8rIgAOVwubwcCbrmGBwCvGmPd7YBs8lhoXxrr9pRhjcMWllFI+r8NEb4y5roPx3wW+28bw/cDk0+foO2nxYdQ2NnOsupHEyJC+DkcppXqF39wZCyda3hwu05Y3Sin/4VeJPjU+DEAvyCql/IpfJfqU2FBE4KAmeqWUH/GrRB8SaGNIdCiH9aYppZQf8atEDzA8PkybWCql/IpfJnq9O1Yp5U/8LtGnxoVTWtNIlT6uWCnlJ/wu0adpyxullJ/xu0Tf0sTysNbTK6X8hN8l+pabprREr5TyF36X6CNCAokPD+aQNrFUSvkJv0v04GpiqSV6pZSf8NNEH6519Eopv+GXiT41LowjFXU0OJr7OhSllOpxfpnoh8eHYQzkldX1dShKKdXj/DLRpyW4Ogo/phdklVK+zy8T/ciECAD2lVT3cSRKKdXzPEr0IvKsiBSLSJt9vorlERHJFZFtIjLNbdxNIrLX9XeTtwLvjuiwIBIiQjTRK6X8QoddCbo8D/wVeLGd8QuA0a6/mcDjwEwRicPqYzYLMMAmEVlhjDnenaC9YWRiOPtK+knVjdMJAV34cdVUB04HBEeACBhj/QUEWP8b3U5kgaFgC3QNr7GmDw4/eXmNNWCcJ5bX4frrwel6ZpDYINi66xhHIzQ3dG5bOlrnqdvTWbZgCHR1H9my39wFhXfuM2ioxjqkAVsIBAafvmz3dTqbIcB2+nIcDdDcaL2WgNM/E/f1tCcgCILsJ947ndBUAwGBEBR6+vq78/m0tez2tqdFoB1sQdbrlmMMTt5v7XE/xrrq1PU4nda2uG+Pu/a2rS2NNdaxGRJxyvBaMB009nBfT+t+k9OX5QUeJXpjzBoRSTvDJAuBF40xBlgnIjEikozVqfiHxpgyABH5EJgPLOtO0N4wclAE724r7LmOwkv2WF+s+JGnjzMGDq+DwROgcAv8/UaYshjm/co6+GqOwaEvrKSx+SUo+AqmfAfSzoGQSEifAxuehA/vt5LKsFlw5ePw5vegqRa+/QK8cy/sX31inaGxMPUGOLDGWifAWbfApQ9Zwz57CA5+Zg0fNB5Gz4Otr1rrm3kbhMVDzgrYtRLGXWJ9ebf9/eSDedSFEDMctvwNHPWd21/xo2Dm7RAxyHpfeQTWPwHNDsi8BnLegdK9nVumu4AgmLwIastg97unj48cArNut+Lf97G1bcPPhsnXWduy8Wk4fhCmXg/5GyFv/Yl57dHw7ZesYZ/89kQiC7TDwsesz+TdH53YbzvehJH/BuEJ1j52T4xp51qfk2mGTc+fvJ72iA0mXQNj50NVEax7HMoPWcMvehASRsM/boHUWRCXDptf7vznEzcSxl9u7ZfKAkBg/EI494eQnAml++Dzv8DWZacn+pAoa5sKsk/enkC7ddyXH4aDa2HS1VB3HHJXwfgrrOXsfOvE/uyqQLu1/tl3WyfTl75l7d+My9y2x43Y4KJfwKw7rM9q7Z+hqtCK9eBnULYfplwPBZsgb501z6RrYOH/WsM+ewhyP/QstrGXQHjiif0WPgh+3I3jvB1i5WYPJrQS/TvGmIltjHsH+J0xZq3r/UfAT7ESvd0Y8yvX8J8BdcaYP7WxjCXAEoDU1NSzDh061IXN8dwzaw/wy3d2sum/LyQ+wksdhW9fbh2w5YesZIFYCTNqiDXeFgQTvgW73oEv/2olCEeDdSDWl1uJMjQOcv4JDleLoMhkGDbTmqelpBiRBNVFMGY+JE+2DkSnwyohBAS6vsQCs++BsDjrxHLoC9jzHsSNgMnfgYo8+OqFE8uKSIJpN1ol0O3/gJJdMOJ8qC2Fou3WeoMjYczFsOcD64syZTHEDrfG1ZbBVy9a25F5LQzK8Hy/OR3w9esn1tNiaJYVz6HPIWmSte9aSoadVZoLW5ZZJahpN544oYCVSPb8Cw6ttd7bQmDcpdYJsPaYNSxuBCRmwO6VEJ1iJfyW0vfmv8Gx3dZyxi+ElOnW8F3vWid0DCRlQtkBa7+NvcRKZk111sknYbQ1fX2ldWKvKrTeRw87eT3tKT9sJe8m170hQ8+CjMutde95z0pu8aOtz7LLn88bULQNUs92nVCOWrE2VFrHYNH2EyfTlu1pkb8Rdq44fb8V74Jtr1nfgxFzrJN5kB1GXWTtZ7HBtBtOfH+6qmU9GGtdzU3WcVu0/cT2iNuvuYOfW/ut5buRMBZi02DvBxCbbhWE3I+DuuNWoaRl+rB46xgLiz9zXDUlsOkF63ObfJ2134JCYfp3u7SZIrLJGJPV5rj+kujdZWVlmezsbI/i6qpPdhdz83Mb+ftt32BGelzXFlJXDm/dYSWh4WfDiwvBHgX2GKsE0dxoldhaSk+N1Se+jFOvt77YDZVw1bOw8f8g+zlr3KgL4KybrZ/L8SOtZFddAjXFVsJa97j1RV3wR6s6Zt/H8OHPrVJIUBis/DHM+SlkfPPkeGuOWSX7lp/wXzwKW1+DGd+1DrTWaganlRQiEq2TxLG91s/n6GHW9rX8/A6JPHn5TfXWtobGdH5fGmNtW0tp0BZibbsIVBdbpZ7u/vKqr7ROhC1VTKcq228l38hk6wTZVGcNa0mUtkDrhBYSefIJp7YMlv+7dRxc+IsTVUCNtfD2HVa12WUPWwmzZb811lr71B59cgyOBqt0DNYX39MTW125VTJ132/OZnjvp9ZJ/VtPWeO68/nUlJx8gqwrt37ptPxC+cb3ITKp7fnb2m8tywi0Wwne/fNpqMKr1RgV+fDFX60S+cLHrJPTqdvTwtlsfYeO7oCz74Sxl1qfac0x67vd1nGw6XlY/5SV4Kfd2P4xdqr2joMu6I1E/yTwiTFmmev9bqwkfz5wvjHmtrama09vJPq8slrO/cNqfnPlJL4zM/XkkRUF1k/glLNOHl5dbJXSWqorNr1glXLA+hLFpMJta9r/kBtrrJKXMVZ1SE9UGSml/NKZEr2nF2M7sgK4U0RexboYW2GMKRSRD4DfiEisa7p5wH1eWme3DI0JJSQwoO2WN+/9BPatturKirbDjresKot/3mNVy7QICofFr1ulhI1PW6WmM53Jg8OtBK+UUr3Io0QvIsuwSucJIpKP1ZImCMAY8wSwErgEyAVqgVtc48pE5JfARteiHmy5MNvXAgKEEYkR5Ba7En1dufWTLTjcqgppqoXd78GXj8GRr2D949bPtptXnqiDDA63/kZfCP/2312vP1ZKqR7kaaub6zoYb4DvtzPuWeDZzofW89Liw9hTWGHVb2/4P6te9uLfWElebLD6N1C2D87/f9ZFktHzYNC4themSV4p1U95q+pmQBoaE0r97lXw+cOQfp7VyuKdH1hVMlMXw4anrAuis75nXYRUSqkByC8fgdBiaGwoU8wujATAoldgxFyrOd3IuVbTQbBao2iSV0oNYH5foh8ju6mLyyAsJBIuuN8q1Y+/AoZMgWtesEr6Sik1gPl3oo8OJD0gl+KYa0gDGDoN7s050bZ2whV9GJ1SSnmHX1fdDG/YT5g0sM8+6cTAyMHavl0p5VP8OtGHF1utPrdIOy1plFLKB/hn1U3ZAXjuEqT2GEUyiF213n9anFJK9Rf+mejzs6HqCExZzLKCDAqOa5eCSinf5Z9VN8cPWv8v+ROlQ8+noFwTvVLKd/lnoi8/CBGDITiMoTFhVNQ1Ud3g6HA2pZQaiPwz0R8/ZD1fGuumKYAjWqpXSvko/030MVaHGUNjrESfV1bblxEppVSP8b9E39wElfmtJfpRiVaLm91Hq/owKKWU6jn+l+gr8qxeflxd4EWHBTE0JpScQk30Sinf5H+JvqXFjatED5CRHEVOYWWfhKOUUj3NfxO9q44eYHxyJPtLqqlvau6bmJRSqgd5lOhFZL6I7BaRXBFZ2sb4P4vIFtffHhEpdxvX7DZuhTeD75TqYlhxFxxca/VW79azfEZyFE4De7SeXinlgzq8M1ZEbMBjwEVAPrBRRFYYY3a2TGOM+YHb9HcBU90WUWeMmeK9kLsoZwV89aL1Om4kBNhaR2UkW8+b33mkksyUmL6ITimleownJfoZQK4xZr8xphF4FVh4humvA5Z5IzivKs6xeo4KT4RBGSeNSo0LIzzYpvX0Simf5MmzboYCeW7v84GZbU0oIsOBdOBjt8F2EckGHMDvjDFvtTPvEmAJQGpqqgdhddLRnZA0Ca5bdlJpHqyOwscmRWrLG6WUT/L2xdhFwHJjjPtVzeHGmCzgO8DDIjKyrRmNMU8ZY7KMMVmJiYnejcoYKN4Bg8dbHYDbo0+bJCM5ipyiSqx+zpVSynd4kugLgGFu71Ncw9qyiFOqbYwxBa7/+4FPOLn+vndUHoH6Chg0vt1JMpKjqKp3kK9PslRK+RhPEv1GYLSIpItIMFYyP631jIiMA2KBL92GxYpIiOt1AjAb2HnqvD2uOMf630GiB7SeXinlczpM9MYYB3An8AGQA/zdGLNDRB4UkcvdJl0EvGpOrvvIALJFZCuwGquOvg8S/Q7r/+D2E/24pEhE0Hp6pZTP8ajjEWPMSmDlKcPuP+X9A23M9wUw6dThvSZvI6x/wnrsQeQQCI1td9LwkECGx4VpiV4p5XN8t4epA2vglUXQVAsYGHVRh7OMHxLFjiOa6JVSvsV3E/3bd1p3v97wBhxef8ZqmxYZSVGs3F5EVX0TkfagXghSKaV6nu8m+upimH4rxKRafx5ouSC7u6iKrLS4noxOKaV6jW8+1Ky5CRx1bbaXP5OxSZEA7Dla3RNRKaVUn/DNRN/gajkTEtmp2YbEhBJkEw5rb1NKKR/im4m+vsL6HxLVqdlsAUJKbJh2K6iU8im+mei7WKIHGBYXpiV6pZRP8dFE72oiae9ciR4gNS5UE71Syqf4aKLveok+NS6MiromKmqbvByUUkr1Dd9M9PWuEn1I51rdAKTGhQNoqV4p5TN8M9F3q+omDNBEr5TyHb6d6Lt0MTYU0ESvlPIdPproq6wOwAPtnZ410h5EXHiwJnqllM/wzURfX2mV5kW6NHtqnLalV0r5Dt9M9A1VXaqfbzE8Poxt+eVsPFjmxaCUUqpv+Giir+xS/XyL2+eMJDosiG8/+SWrdxV7MTCllOp9Pproq7rUtLJFRnIU799zHvHhIbyxub3ucZVSamDwKNGLyHwR2S0iuSKytI3xN4tIiYhscf19123cTSKy1/V3kzeDb1d990r0YPU4dd6YBD7bW0Kz03Q8g1JK9VMdJnoRsQGPAQuA8cB1ItJWLx6vGWOmuP6eds0bB/wcmAnMAH4uIu335+ctDZXdqqNvcf7YQZTXNrEtv9wLQSmlVN/wpEQ/A8g1xuw3xjQCrwILPVz+xcCHxpgyY8xx4ENgftdC7YSGyk4/ubIt545KIEDgk90lXghKKaX6hieJfiiQ5/Y+3zXsVFeJyDYRWS4iwzo5LyKyRESyRSS7pKQbidUYVx1996puAGLDg5k8LIZP9miiV0oNXN66GPtPIM0Yk4lVan+hswswxjxljMkyxmQlJiZ2PZKmOnA6vFJ1AzBvfBJb88r5uqDCK8tTSqne5kmiLwCGub1PcQ1rZYwpNcY0uN4+DZzl6bxe140nV7Zl8axUokODeHjVHq8sTymlepsniX4jMFpE0kUkGFgErHCfQESS3d5eDuS4Xn8AzBORWNdF2HmuYT2noetPrmxLlD2IJeeNYFVOMVvz9KKsUmrg6TDRG2McwJ1YCToH+LsxZoeIPCgil7smu1tEdojIVuBu4GbXvGXAL7FOFhuBB13Dek43HmjWnpvOTiM4MIB3txd6bZlKKdVbAj2ZyBizEkLHhg8AABfqSURBVFh5yrD73V7fB9zXzrzPAs92I8bOqe/6I4rbExESyMjECPYcrfLaMpVSqrf43p2xXq6jbzF2cAR7j1Z7dZlKKdUbfDDRt1TdeK9EDzAmKZKC8jqq6rWLQaXUwOKDib5nSvRjBlnL26OleqXUAKOJ3kNjk1oSvdbTK6UGFt9M9IF2sAV5dbFDY0IJDbJpoldKDTi+l+gbq71emgcICBDGDNaWN0qpgcf3En1DFQRH9MiixwyOZOeRSnKLNdkrpQYOH0z0PVOiB5g/MYnKegcX/s8a/r4xr+MZlFKqH/DBRO+dJ1e25YKMwXx537+RGhfGv3Ye7ZF1KKWUt/leom/suaobgEGRdiYPi2FXUWWPrUMppbzJ9xJ9D5boW4xLiiT/eB2VevOUUmoA8MFEXw0hPVeiBxifbN11u6tQL8oqpfo/H0z0vVCiT7aWr9U3SqmBwLcSfbMDHHUQ3LOJPinKTkxYEDmFmuiVUv2fbyX6xpbHH/Rs1Y2IMC4pkhytulFKDQC+legbXA8c6+GqG4CM5Ch2F1VR39Tc4+tSSqnu8CjRi8h8EdktIrkisrSN8feKyE4R2SYiH4nIcLdxzSKyxfW34tR5varRleh7sHlli7ljB1HvaOb6p9dzvKaxx9enlFJd1WGiFxEb8BiwABgPXCci40+ZbDOQZYzJBJYDf3AbV2eMmeL6u5ye1PrkSu8+i74t541J5K/XTWNbQQX3r9jR4+tTSqmu8qREPwPINcbsN8Y0Aq8CC90nMMasNsbUut6uA1K8G6aHGnqnjr7FpZnJ3DBrOO9tL6S4qr5X1qmUUp3lSaIfCrg/2CXfNaw9twLvub23i0i2iKwTkSvam0lElrimyy4pKfEgrDb00LPoz+Q7M1NxOI0++0Yp1W959WKsiFwPZAF/dBs83BiTBXwHeFhERrY1rzHmKWNMljEmKzExsWsB9GIdfYuRiRGcPTKeV9YfpsGhF2aVUv2PJ4m+ABjm9j7FNewkInIh8F/A5caYhpbhxpgC1//9wCfA1G7Ee2Z9UKIH+I9zR3Ckop4bn9lARa0+FkEp1b94kug3AqNFJF1EgoFFwEmtZ0RkKvAkVpIvdhseKyIhrtcJwGxgp7eCP01D75foAeaOG8RfFk3hq8PHmfXbj/jxP7Zqs0ulVL8R2NEExhiHiNwJfADYgGeNMTtE5EEg2xizAquqJgL4h4gAHHa1sMkAnhQRJ9ZJ5XfGmB5M9JVgC4HA4B5bRXsWThnKyMQInvv8IP/YlM+csYl8M3NIr8ehlFKn6jDRAxhjVgIrTxl2v9vrC9uZ7wtgUncC7JQe6kbQUxOHRvOHqzP5eNdRPsop1kSvlOoXfO/O2F5qWtkeW4Awd+wgVu8uptlp+jQWpZQCn0v0VT3+QDNPXJAxmPLaJtbmHuOjnKOa8JVSfcq3En0fV920OHdMAoEBwi3PbeDWF7J57vMDfR2SUsqP+Vaib6js86obgCh7EFdOHcq01Fiyhsfyl4/2Ulrd0PGMSinVA3ws0fePEj3AH6+ZzPLvnc3vrsqktrGZX72bgzFahaOU6n0+luh7tmPwrhg1KILvzx3Fm5sL+H9vbsfZTn29MYbaRkcvR6eU8ge+lej7SR39qX5w4WjunDuKZRvyeHLNfipqm3hgxQ72HrXu5DXGcM+rW5jzx0+oadBkr5TyLo/a0Q8Y33oKYtP6OorTiAg/nDeG3OJq/rxqD+/vKGJrXjmrco6y4s5zeHfbEVZsPQLAG5sLuGHW8A6WqJRSnpP+WG+clZVlsrOz+zoMryupamDenz/leG0Td5w/kqfXHkCABoeTOWMSKa1poKHJyb9+cB6uO4yVUsojIrLJ9QDJ0/hWib6fS4wM4blbZlBUUc/8iUnMSI/j/a+LGDM4kmuyUnj/6yJ+vHwbn+wuYe64QX0drlLKR2iJvh+pb2pm3p/XUFxVz4OXT+SCjEHER4T0dVhKqQFAS/QDhD3IxuvfO5vbX97ET17fBlitdhZMTOLGb6Txee4x3tl2hKULMhg1qO3WRcYYdhZWMnZwJIE237rWrpTqGi3R90NNzU42Hijj6yMVfLK7hHX7SwkQweE02AKEsCAb912SwaWZyQTZhKfW7Odv6w/zo3ljOHCslic+3ceFGYN49LpphAbb+npzBjRjDP/IzmfuuEEkRvb/X1fGGL2+46fOVKLXRD8A7C+p5sUvDzEiMZy5Ywdx5ytfsTW/4qRpUuPCOFxmdds7Mz2ODQfLmJ4Wx8u3ziQ48ETJvqK2iQOlNUwaGo0tQDDGkFdWx+DoEEICT5wU6puasQfZyCur5S8f7WVqagwXT0gi4QxVSXuOVnG0sp5zR3veQ1iDo5nfvJtDSJCNO84fSUxYMMYYdh+tYlCknYq6JrbmlXPxhKRunbRqGhz85PVtZCRF8v25o7jn1S2IwEPXTD7jL5+1e49x/TPrufqsFP50zWQAiivrOVrZwKSU6Nbpmp2GAOG0JLvpUBnBNttJ03bE0ezkn9uOMHVYLGkJ4R7Pt+nQcf7ztc38ZdFUpqXGAtb+bXA4ibIHebwcNTBpovcxxhi25lfwee4xjDFMGx7LjLQ4/vLRXhxOw4/njeXtrQX84LWtXD8rlRnp8RRX1pMWH879b3/NkYp6BkeFMCQmlMLyeooq6xmXFMnvr8rk0z0l/HPrEQ6V1fLwtVN48tN9bCuowBgItgWwcMoQrj4rhUCb8N72IrbkldPkNKTFh/HOtkKanYZ7LhjNf144GoDP9h7DAFH2QA6V1hIabGNQZAhNzYZj1Q288MVB1h8oI0AgKjSIV5fMYlteRWvVVYsFE5P4xcIJvPzlIdISwslIjqKwoo5xSVEMiQk9bR/tL6nm832lnDsqgdrGZn729tdsOnQcEatHsKfW7AfguhnD+M6M4azZW8KHO49yTVYK35mR2pqwb3p2A5/uKSHIJrx3z3n84f1drMo5itPALxdO4IZvpJFXVsvip9eTmRLNI4umEuA6gT6z9gC/XplDSGAAz98yg1kj4k+KsanZyXtfF5FXVos9yMbcsYnsL6nhLx/tZXtBBaFBNn6xcALfzhpGTYODjQfLGJkYQUps6GknlKZmJ5c+8hl7jlaTmRLNW3fMpqrBwaKn1lFSVc8b35tNanzYGY+rTYeOMyw2lEFRdo+PRafTsDb3GGcNjyU8pHM1wY0OJz9ZvpWM5ChumzOS9ftLiY8IZtSg7t0Lk1tcxZf7Slk8czgBAdZ+eu7zA7y7rZCymkZevHUG9U3NPLxqL/dfNp5Bkadv758+2M2Gg2U8uHAC45KiOlxndYODbfnlTBkWQ1hw39SIa6L3U798ZyfPrD35gWpDou3cMXcUn+ceo7rBQUxYMBnJkTy+eh9Vrpu1ZqbHUd3gYMeRSgAeXzyNEYkRvLzuEMs35VPn6j0rODCAzKFWSfXrIxVcljkEp4HXv8pnzOAIwkMC2Xy4/IwxBgcG8MerMxmbFMkNz2wgIiSQY9UNjB0cyfyJSYQE2ThW1cBfPtpLSGAADQ7nacuYkR7HXf82irjwYHKLq9l8uJxX1h+msfnEtMG2AH595UQe+tceiirrmTQ0mrNHxvOkK+EDDIsLJa+sjlGDIkiOtjNlWAyPfpzLt7NSWL4pn9AgG/UOJ7fPGcHuoipW5RRzYcZgdh+t5GhlA40OJ7eek87dF4zmN+/m8Fp2HvPGD+bAsRqOlNfxqysncsWUoQCs3l3Mb1buIre4+rTtSYgI4ccXj+GtzUf4cn8pP5k/lg93Hm3dlwkRwWQNj+O756aTlRaHMYY/r9rLIx/t5cqpQ3lzcwG3zE5j8+FydhypwB5kIzEyhEXTh9HUbDDGMGFoNLPS4wkNtlFcVc+v383h7S1HiAgJ5IfzxrBoemrrL6iq+iYKyusoqqhn3f4ywoJtXDl1KCmxofzq3RyeWXuApCg7Dy6cwLwJSYB1Aqioa6Kk2moyPCTGTnxECMYYvtxfSpQ9iOWb8nn+i4MAnD82kU92l5AYGcKKO2fz63dzsAfZ+O23JhEggtMYgtr45VVYUcfL6w5xyaRkJgyJ5qvDx7n52Q1U1jtYPDOVX10xkeWb8vnx8m1MGBLF/pIavjEynpKqBrYXVHDdjGHcd0kGr6w/zNRhMWSlxZFTWMllf12LYD12/H++PYXLJg8hr6yWhIiQ035ZHjhWw3df2Mi+khpCg2xcNjmZG7+RxpjBkZTXNnKkop7ModGtJ50WBeV15JXVMjjKTnonfrm1RxO9n2pqdvLSl4cYlxxJWnw4W/LKmZke12ZLntziKlZuL+KyyUNITwinqr6JH7y2hTGDI/nJ/HGt09U0OPhoVzFOp+HC8YOJcJXiWuqGjTG8/lUBL3xxkNLqBu6+YDTpCeFU1jtIiw+jvslJSXU9QbYA4sNDGBYXSqSrWuHLfaUsfnodwYEBvH/Pea3VFsYYHlixg5zCKn55xURqGh0UHK9jcJSdjQfL+Nu6QxypqG+N0RYgXJaZzHfPHcHGg2WEhwQyd6xVx/5RzlGWvrGdZ27KYuKQaDYeLGuNbWRiBH/bcJiPc45SWFHPrqIq7EEBfLn0Av777a9Zub2Qh6+dwsIpQ2l0OPnD+7v4MOcodY3NPHVjFss35fHyusOtcdw5dxT3XjSGY9UN3PbyJjYfLmdYnPXrI6+sjmFxofz3peOZMyaR4soGPt1TzPD4cGaOiCMk0Iaj2cmdr2zm/R1F2AKEBxdOwGlgy+FyPt1TzLHqRiYNjSY6NIi1ucf4ZmYyjyyayrce/4IteeWEBdv449WTSYgI5t+f30hN48ndW4YEBpCZEs3W/AqMMSw5bwTb8iv4bO8xIu2BzEyPJzBA+Hh3MY2uE2yQzbpWZAykxIaSf7yOK6YMYc/RanYWVvKjeWPYcaSSVTlHaWo+ObekJ4RjD7KRU1jZOuzms9Morqpn5fYiLpmUxKqcYoJtAVS7Ch3fGBHPvpJqahubuXhCktVFp8DklGh2FVXx7rZCGhxOQoNsXJqZzIqtR0iOtnPOqAT+tv4wYwZHcKi0lrOGx/Liv8/guc8P8uuVOQBkpkTzdUEFY5OiWmMaGhNKaLCNsppG3vje2fxk+TY25x1nzphEVuUUMzgqhNmjEliz5xjx4cHEhQez8WAZkfZAli4Yx5a8ct7cXEB9kxMRaEmvZw2PZemCcWQNj6Wp2fDHD3bxf58daD1evzdnJJNSojEG5k9M6vjL3YZuJ3oRmQ/8BasrwaeNMb87ZXwI8CJwFlAKXGuMOegadx9wK9AM3G2M+aCj9Wmi91/vf11ISJCNuWM9v4+gwdHMe9uLCLQJYwZbJzX36xKn8vSC5c4jlTicTjJTYqhucHCotIYJQ06va29ZntNp+Cz3GBsOlJKZYl3TaNHsNLyy4TDr9pfS0NTMgonJXDZ5yBnjBKt64/fv72JmelxraRmgttHBK+sP897XRewrqeaO80dy6zkjsAUI1Q0OyqobGRobis1ViqxvasbhNAQGWKXj7IPH+XRPCesPlDJpaDS3nTeStIRwjDFsOFDGa9l57CiopKKuiYsnDGZGejyx4UFMGRbD8dom3tl6hPUHyhg9OIKfXjyOxmYndy3bzIc7jxIaZOPa6cMYHh9GYmQIQbYADpfW8lnuMYor67lldhoBIhwpr+eOuSMB2F1UxYQhUby07hD3v72DBxdOoK6xmd++t4sZ6XGkxITy4c6jxEcE0+BwUlhRT0xYEPPGD+a6Gak8sGIH2wsquPqsFH588TgSIoJ5/ouDfLqnhNrGZv538TQSIkJwNDtZ/PR6hseHsXRBBnP+sJq6pmYe+vZkRISXvjzIxoPH+cPVmXw7axiV9U1c++Q69hyt4uaz09iSV05OYSVzxw2iqt5BcWU9c8YmcsOs4aTEWlVjx2sa+WhXMXlltUTaAwkODODhVXspq2kkPjyYmkYH9U1OFs9MZf7EJN7cXMAbXxUAEB8ezKafXdThsdmWbiV6EbEBe4CLgHyszsKvc+/7VUTuADKNMbeLyCLgSmPMtSIyHlgGzACGAKuAMcaYM/acrYleqYHH0ezkzc0FnD0qgaFtXDfxVEVtE9Fh1q+8kqoGEiKCTzoxG2MoqWogPiKk9UTW6HBSVtNIUnTH1xfcT/QbXNeHstLiWseXVDWc1MKqpsFBWU0jw+LCTpvfU1X1TXy48yif55YSGxbE7NEJJxVm9h6tar1o3tG1lPZ0N9F/A3jAGHOx6/19AMaY37pN84Frmi9FJBAoAhKBpe7Tuk93pnVqoldKqc45U6L35I6aoUCe2/t817A2pzHGOIAKIN7DeVuCXCIi2SKSXVJS4kFYSimlPNFvbp00xjxljMkyxmQlJnreDlsppdSZeZLoC4Bhbu9TXMPanMZVdRONdVHWk3mVUkr1IE8S/UZgtIiki0gwsAhYcco0K4CbXK+vBj42VuX/CmCRiISISDowGtjgndCVUkp5osNbuIwxDhG5E/gAq3nls8aYHSLyIJBtjFkBPAO8JCK5QBnWyQDXdH8HdgIO4PsdtbhRSinlXXrDlFJK+YDutrpRSik1gGmiV0opH9cvq25EpAQ41MXZE4BjXgzHWzSuzuuvsWlcnaNxdV5XYhtujGmzbXq/TPTdISLZ7dVT9SWNq/P6a2waV+doXJ3n7di06kYppXycJnqllPJxvpjon+rrANqhcXVef41N4+ocjavzvBqbz9XRK6WUOpkvluiVUkq50USvlFI+zmcSvYjMF5HdIpIrIkv7MI5hIrJaRHaKyA4Rucc1/AERKRCRLa6/S/oovoMist0VQ7ZrWJyIfCgie13/Y3s5prFu+2WLiFSKyH/2xT4TkWdFpFhEvnYb1ub+EcsjrmNum4hM64PY/igiu1zrf1NEYlzD00Skzm3fPdHLcbX72YnIfa59tltELu7luF5zi+mgiGxxDe/N/dVejui548wYM+D/sB62tg8YAQQDW4HxfRRLMjDN9ToSqxvG8cADwI/6wb46CCScMuwPwFLX66XA7/v4sywChvfFPgPOA6YBX3e0f4BLgPcAAWYB6/sgtnlAoOv1791iS3Ofrg/iavOzc30XtgIhQLrre2vrrbhOGf8QcH8f7K/2ckSPHWe+UqKfAeQaY/YbYxqBV4GFfRGIMabQGPOV63UVkEM7vWr1IwuBF1yvXwCu6MNYLgD2GWO6emd0txhj1mA9gdVde/tnIfCisawDYkQkuTdjM8b8y1i9ugGsw+rzoVe1s8/asxB41RjTYIw5AORifX97NS4REeDbWH1a96oz5IgeO858JdF73GVhbxKRNGAqsN416E7XT69ne7t6xI0B/iUim0RkiWvYYGNMoet1ETC4b0IDrEdcu3/5+sM+a2//9Lfj7t+xSn4t0kVks4h8KiLn9kE8bX12/WWfnQscNcbsdRvW6/vrlBzRY8eZryT6fkdEIoDXgf80xlQCjwMjgSlAIdbPxr5wjjFmGrAA+L6InOc+0li/Ffukza1YHdtcDvzDNai/7LNWfbl/zkRE/gurz4e/uQYVAqnGmKnAvcArIhLViyH1u8/uFNdxcoGi1/dXGzmilbePM19J9P2qy0IRCcL6AP9mjHkDwBhz1BjTbIxxAv9HD/1c7YgxpsD1vxh40xXH0Zafgq7/xX0RG9bJ5ytjzFFXjP1in9H+/ukXx52I3Ax8E1jsShC4qkZKXa83YdWFj+mtmM7w2fX5PhOru9NvAa+1DOvt/dVWjqAHjzNfSfSedHfYK1x1f88AOcaY/3Eb7l6ndiXw9anz9kJs4SIS2fIa60Le15zcFeRNwNu9HZvLSaWs/rDPXNrbPyuAG12tImYBFW4/vXuFiMwHfgJcboypdRueKCI21+sRWN147u/FuNr77PpD96IXAruMMfktA3pzf7WXI+jJ46w3rjL3xh/Wlek9WGfi/+rDOM7B+sm1Ddji+rsEeAnY7hq+Akjug9hGYLV42ArsaNlPQDzwEbAXWAXE9UFs4Vgdyke7Dev1fYZ1oikEmrDqQm9tb/9gtYJ4zHXMbQey+iC2XKz625Zj7QnXtFe5PuMtwFfAZb0cV7ufHfBfrn22G1jQm3G5hj8P3H7KtL25v9rLET12nOkjEJRSysf5StWNUkqpdmiiV0opH6eJXimlfJwmeqWU8nGa6JVSysdpoldKKR+niV4ppXzc/werzw3QOTy/pgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# plot the loss and accuracy\n",
"import matplotlib.pyplot as plt\n",
"plt.plot(losses)\n",
"plt.plot(accuracies)\n",
"plt.legend(['Loss', 'Accuracy'])\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "30cq1fmqK-my"
},
"source": [
"It looks like the model achieves a very high accuracy and small loss on the training dataset. To see how well it generalizes, let's test on the testing nodes:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "_6Q354OSLVkG",
"outputId": "8a86891a-bd2f-4d43-cb4f-d4773c8b6f00"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 0.7900\n"
]
}
],
"source": [
"# evaluate the model on test set\n",
"model.eval()\n",
"pred = model(data).argmax(dim=1)\n",
"correct = compute_accuracy(pred[data.test_mask], data.y[data.test_mask])\n",
"acc = int(correct) / int(data.test_mask.sum())\n",
"print(f'Accuracy: {acc:.4f}')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "iwOLBEpgLW3p"
},
"source": [
"Very cool! It seems we got a very nice accuracy for the test as well. Our model is doing okay. There are many ways you can go about trying to improve this model, but we will keep that for another time. Hopefully, with this tutorial you got a glimpse of graph data and how to use PyTorch Geometric to train GNNs on a very popular dataset. "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NapVlc1wH_1Y"
},
"source": [
"Note that I haven't tested if this code works with GPUs. I will leave that as an exercise for the learner. "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZtRNFO0mL2_b"
},
"source": [
"If you are interested in the full tutorial and more examples, visit the [PyTorch Geomtric documentation](https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html) where I adapted the code from. \n",
"\n",
"Feel free to reach out on [Twitter](https://twitter.com/omarsar0) if you have any further questions."
]
}
],
"metadata": {
"colab": {
"name": "Introduction to GNNs with PyTorch Geometric.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
|