File size: 172,973 Bytes
733c188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
{
 "cells": [
  {
   "cell_type": "raw",
   "metadata": {},
   "source": [
    "---\n",
    "title: 12 Emotion Classification with Fine-tuned BERT\n",
    "description: Emotion classification using fine-tuned BERT model\n",
    "---"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a href=\"https://colab.research.google.com/drive/1nwCE6b9PXIKhv2hvbqf1oZKIGkXMTi1X?usp=sharing\" target=\"_blank\"><img align=\"left\" alt=\"Colab\" title=\"Open in Colab\" src=\"https://colab.research.google.com/assets/colab-badge.svg\"></a>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "Wj6eoKzotv5I"
   },
   "source": [
    "## Emotion Classification using Fine-tuned BERT model\n",
    "\n",
    "In this tutorial, I will show to fine-tune a language model (LM) for emotion classification with code adapted from this [tutorial](https://zablo.net/blog/post/custom-classifier-on-bert-model-guide-polemo2-sentiment-analysis/) by MARCIN ZABŁOCKI. I adapted his tutorial and modified the code to suit the emotion classification task using a different BERT model. Please refer to his tutorial for more detailed explanations for each code block. I really liked his tutorial because of the attention to detail and the use of high-level libraries to take care of certain parts of the model such as training and finding a good learning rate. \n",
    "\n",
    "Before you get started, make sure to enable `GPU` in the runtime and be sure to \n",
    "restart the runtime in this environment after installing the `pytorch-lr-finder` library.\n",
    "\n",
    "This tutorial is in a rough draft so if you find any issues with this tutorial or have any further questions reach out to me via [Twitter](https://twitter.com/omarsar0). \n",
    "\n",
    "Note that the notebook was created a little while back so if something break it's because the code is not compatible with the library changes.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "G2tokZqttmTA"
   },
   "outputs": [],
   "source": [
    "%%capture\n",
    "!pip install transformers tokenizers pytorch-lightning"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "I0jZnNegGhZj"
   },
   "source": [
    "Note: you need to Restart runtime after running this code segment"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "k9ZKIIGvuW5m"
   },
   "outputs": [],
   "source": [
    "%%capture\n",
    "!git clone https://github.com/davidtvs/pytorch-lr-finder.git && cd pytorch-lr-finder && python setup.py install"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 35
    },
    "id": "qqRRWe4UuuIh",
    "outputId": "479b5e60-10b5-4d84-c8fc-291ec32feceb"
   },
   "outputs": [
    {
     "data": {
      "application/vnd.google.colaboratory.intrinsic+json": {
       "type": "string"
      },
      "text/plain": [
       "'1.10.0+cu111'"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import torch\n",
    "from torch import nn\n",
    "from typing import List\n",
    "import torch.nn.functional as F\n",
    "from transformers import DistilBertTokenizer, AutoTokenizer, AutoModelWithLMHead, DistilBertForSequenceClassification, AdamW, get_linear_schedule_with_warmup\n",
    "import logging\n",
    "import os\n",
    "from functools import lru_cache\n",
    "from tokenizers import ByteLevelBPETokenizer\n",
    "from tokenizers.processors import BertProcessing\n",
    "import pytorch_lightning as pl\n",
    "from torch.utils.data import DataLoader, Dataset\n",
    "import pandas as pd\n",
    "from argparse import Namespace\n",
    "from sklearn.metrics import classification_report\n",
    "torch.__version__"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "_whSBDujRiga"
   },
   "source": [
    "## Load the Pretrained Language Model\n",
    "We are first going to look at pretrained language model provided by HuggingFace models. We will use a variant of BERT, called DistilRoBERTa base. The `base` model has less parameters than the `larger` model. \n",
    "\n",
    "[RoBERTa](https://arxiv.org/abs/1907.11692) is a variant of of BERT which \"*modifies key hyperparameters, removing the next-sentence pretraining objective and training with much larger mini-batches and learning rates*\".\n",
    "\n",
    "Knowledge distillation help to train smaller LMs with similar performance and potential."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "BvHNcMckSR4M"
   },
   "source": [
    "First, let's load the tokenizer for this model:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 145,
     "referenced_widgets": [
      "bfa062ba95014af8993654adebeed30b",
      "494133cceef14cae8fa7efa5d18bfb45",
      "522e5a6c954c4297b21f8e0cea44a171",
      "269ff42456ee47bba72aca0923542c29",
      "511c63b5846447f1a98f99efa7b414ef",
      "9f2624b1ec3a4de3aeac12b403131745",
      "55662051a2f845c2a9de8fc27eea8485",
      "b93fa5f05abe46f8a15cd4b93f743243",
      "6b01657a3a0f47569757d62cff6970bd",
      "8fcfdc4bfbf74c73a38aa13175269565",
      "352725603b554637bceb08047c134523",
      "7b89a5097be146cb94844ff9af75bb77",
      "dd64efe54437454c9d919530cceadff7",
      "ccdae4645e744fd1a083d857d0e56a0a",
      "9404f7978dba4adfb4b757b8446bfae5",
      "43fdffaac68940beb54c21e0f5d21135",
      "0e3236fcfc07425ab83f1b158e3c0f00",
      "cb4074b47b464adb863bf9d8048ff10a",
      "bc402b2b5ac64749abee5ef047a78022",
      "b5cc3132707b4ee5885bc3bab6b384f4",
      "4f896b64ee4c4102aa5826f3927ed297",
      "eb8e48d71030482286bba58939a3ba25",
      "2ab5305315964703bf834e87f1881aaf",
      "aa7dcbcebf7e450da1d472da998b93ab",
      "728bb27db36d49319bcd129245ce2ade",
      "f8c4c65ab8eb4602b9cc67a18f17a80f",
      "52f517a67ec549d8bb3d952bc5c8471e",
      "a065514ff5ab45418085d2b5450c81ea",
      "09efbdba1ef1407aab615418a44a6571",
      "ae1118ec19ec4fb095c1e5616c366ee2",
      "a67576e0883e45de9f7c6e25d32601e4",
      "f80c7217e70b408684909176198e8720",
      "e894699ebf924a978689b1754e28449e",
      "93f62d912f43409ab8c9bd245b137bde",
      "0df8766d48974f799cf4a253ebfd8206",
      "a6f26948e4fe449b99e58a584be39492",
      "d1519847727e42a6b6a46fd1b425068c",
      "843b224c4f454a2695bbc99869987d80",
      "3f5081a276b04d38aca64760de0a078e",
      "4f51720e43824ae59e343090b4718f15",
      "697378036251425d965f8e52b36cfa60",
      "e940a875278a4ce297c7fe35be8014f8",
      "7306f377658349a5a36123251c68be41",
      "0a8b8f25fda04d358c8eb4575b5998fd"
     ]
    },
    "id": "BPbTd5lmuzQn",
    "outputId": "68c9cb51-f420-45a7-e500-235fd96c2038"
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "bfa062ba95014af8993654adebeed30b",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/480 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "7b89a5097be146cb94844ff9af75bb77",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/878k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "2ab5305315964703bf834e87f1881aaf",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/446k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "93f62d912f43409ab8c9bd245b137bde",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/1.29M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "tokenizer = AutoTokenizer.from_pretrained('distilroberta-base')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "7KAbKMqJSWRo"
   },
   "source": [
    "Now let's load the actual model with the LM head that takes care of the prediciton for the LM. When fine-tuning we don't use the head and instead use the base model. The code below shows how to do this:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 104,
     "referenced_widgets": [
      "950b4d43541b44cc959d62b45c6d14e3",
      "6a85a6adc199436f89b9038868ae0f48",
      "2fd1ea2ed94447f1b6cc11e407aca6f2",
      "2cd0df845e9f414e8c3a9c5d7dd9eac1",
      "8d421622ad4146cfb83237de735d3e34",
      "d1aea3f85fbb40b1ae318bcc5044b2f1",
      "0f3f0061d0e54bbbb274c5302463e67f",
      "c01bbd73be554b199bc3cfac4fd25952",
      "391e7c73480b41209fd65fbacebe9e76",
      "4d130af1b2a742869aabb3bdf7402331",
      "59d8e41de3c8447ab01d1b525709f6ae"
     ]
    },
    "id": "PCXYlMydzQlP",
    "outputId": "872c8d52-a9d3-4848-b369-6faedd5165c0"
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/usr/local/lib/python3.7/dist-packages/transformers/models/auto/modeling_auto.py:882: FutureWarning: The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use `AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and `AutoModelForSeq2SeqLM` for encoder-decoder models.\n",
      "  FutureWarning,\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "950b4d43541b44cc959d62b45c6d14e3",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading:   0%|          | 0.00/316M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "model = AutoModelWithLMHead.from_pretrained(\"distilroberta-base\")\n",
    "base_model = model.base_model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "K2_8S8BXSpNa"
   },
   "source": [
    "Let's now try out the tokenizer first:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "5fidSmH-zrY_",
    "outputId": "b90e076e-5b23-44f2-ec35-aa3a9849fac4"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "dict_keys(['input_ids', 'attention_mask'])"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "text = \"Elvis is the king of rock!\"\n",
    "enc = tokenizer.encode_plus(text)\n",
    "enc.keys()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "m8F8yQCDTDQi",
    "outputId": "30c4c9d9-d559-44a8-af7e-3482324a39b4"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'input_ids': [0, 9682, 9578, 16, 5, 8453, 9, 3152, 328, 2], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}\n"
     ]
    }
   ],
   "source": [
    "print(enc)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "P3wSCLKW0ndh"
   },
   "source": [
    "`input_ids` are the numerical encoding of the tokens in the vocabulary. `attention_mask` is an addition option used when batching sequences together and you want to tell the model which tokens should be attented to ([read more](https://huggingface.co/transformers/glossary.html#attention-mask)). The attention mask information helps when dealing with variance in the size of sequences and we need a way to tell the model that we don't want to attend to the padded indices of the sequence.\n",
    "\n",
    "We are only using `input_ids` and `attention_mask`\n",
    "\n",
    "We need to also unsqueeze to simulate batch processing\n",
    "\n",
    "Using DistilBertForSequenceClassification: https://huggingface.co/transformers/model_doc/distilbert.html#distilbertforsequenceclassification"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "Mxsts4uT0PgA",
    "outputId": "b4f42ac5-7577-464d-a346-90eec73b8b28"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "torch.Size([1, 10, 768])"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "out = base_model(torch.tensor(enc[\"input_ids\"]).unsqueeze(0), torch.tensor(enc[\"attention_mask\"]).unsqueeze(0))\n",
    "out[0].shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "ZiCO-n_1AHIf",
    "outputId": "4ea312ee-7ba1-458d-dbc4-31e9d05596bd"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "torch.Size([1, 768])"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "## size of representation of one of the tokens \n",
    "out[0][:,0,:].shape"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "srwIb9nr4g4t"
   },
   "source": [
    "`torch.Size([1, 768])` represents batch_size, number of tokens in input text (lenght of tokenized text), model's output hidden size."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "iAsg0H6g53Bf",
    "outputId": "9cac2261-c90e-4bbc-8db2-2bbaa458035f"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[0, 9682, 9578, 16, 5, 8453, 9, 3152, 2]\n",
      "<s>Elvis is the king of rock</s>\n",
      "Length: 9\n",
      "torch.Size([9, 768])\n"
     ]
    }
   ],
   "source": [
    "t = \"Elvis is the king of rock\"\n",
    "enc = tokenizer.encode_plus(t)\n",
    "token_representations = base_model(torch.tensor(enc[\"input_ids\"]).unsqueeze(0))[0][0]\n",
    "print(enc[\"input_ids\"])\n",
    "print(tokenizer.decode(enc[\"input_ids\"]))\n",
    "print(f\"Length: {len(enc['input_ids'])}\")\n",
    "print(token_representations.shape)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "9RFifOoY7Hsc"
   },
   "source": [
    "## Building Custom Classification head on top of LM base model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "vSUMm4Oq7nvR"
   },
   "source": [
    "Use Mish activiation function as in the one proposed in the original tutorial"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "tCEDXLxq628O"
   },
   "outputs": [],
   "source": [
    "# from https://github.com/digantamisra98/Mish/blob/b5f006660ac0b4c46e2c6958ad0301d7f9c59651/Mish/Torch/mish.py\n",
    "@torch.jit.script\n",
    "def mish(input):\n",
    "    return input * torch.tanh(F.softplus(input))\n",
    "  \n",
    "class Mish(nn.Module):\n",
    "    def forward(self, input):\n",
    "        return mish(input)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "C6Ln6KWm74ku"
   },
   "source": [
    "The model we will use to do the fine-tuning"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "9VDRSRsc71H2"
   },
   "outputs": [],
   "source": [
    "class EmoModel(nn.Module):\n",
    "    def __init__(self, base_model, n_classes, base_model_output_size=768, dropout=0.05):\n",
    "        super().__init__()\n",
    "        self.base_model = base_model\n",
    "        \n",
    "        self.classifier = nn.Sequential(\n",
    "            nn.Dropout(dropout),\n",
    "            nn.Linear(base_model_output_size, base_model_output_size),\n",
    "            Mish(),\n",
    "            nn.Dropout(dropout),\n",
    "            nn.Linear(base_model_output_size, n_classes)\n",
    "        )\n",
    "        \n",
    "        for layer in self.classifier:\n",
    "            if isinstance(layer, nn.Linear):\n",
    "                layer.weight.data.normal_(mean=0.0, std=0.02)\n",
    "                if layer.bias is not None:\n",
    "                    layer.bias.data.zero_()\n",
    "\n",
    "    def forward(self, input_, *args):\n",
    "        X, attention_mask = input_\n",
    "        hidden_states = self.base_model(X, attention_mask=attention_mask)\n",
    "        \n",
    "        # maybe do some pooling / RNNs... go crazy here!\n",
    "        \n",
    "        # use the <s> representation\n",
    "        return self.classifier(hidden_states[0][:, 0, :])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "wjgME-3O8Yfo"
   },
   "source": [
    "### Pretest the model with dummy text\n",
    "We want to ensure that the model is returing the right information back."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "Y6H9eF8A8XeV",
    "outputId": "4cc0eccb-40bb-420d-f679-7fa3b548b9a6"
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/usr/local/lib/python3.7/dist-packages/transformers/models/auto/modeling_auto.py:882: FutureWarning: The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use `AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and `AutoModelForSeq2SeqLM` for encoder-decoder models.\n",
      "  FutureWarning,\n"
     ]
    }
   ],
   "source": [
    "classifier = EmoModel(AutoModelWithLMHead.from_pretrained(\"distilroberta-base\").base_model, 3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "-sjfHJ_L9iNH"
   },
   "outputs": [],
   "source": [
    "X = torch.tensor(enc[\"input_ids\"]).unsqueeze(0).to('cpu')\n",
    "attn = torch.tensor(enc[\"attention_mask\"]).unsqueeze(0).to('cpu')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "o6QhCuEC-y2z",
    "outputId": "2dd22943-cb2c-4235-faae-a9024cbf69ec"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([[ 0.0115, -0.1552,  0.0227]], grad_fn=<AddmmBackward0>)"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "classifier((X, attn))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "I-N7WSY7Cb7v"
   },
   "source": [
    "## Prepare your dataset for fine-tuning"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "jDWkjaLV-5tj"
   },
   "outputs": [],
   "source": [
    "!mkdir -p tokenizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "wMMm5Ye1Db-m",
    "outputId": "0babb6a0-f763-4684-82f9-55819619a807"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "('tokenizer/tokenizer_config.json',\n",
       " 'tokenizer/special_tokens_map.json',\n",
       " 'tokenizer/vocab.json',\n",
       " 'tokenizer/merges.txt',\n",
       " 'tokenizer/added_tokens.json',\n",
       " 'tokenizer/tokenizer.json')"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "## load pretrained tokenizer information\n",
    "tokenizer.save_pretrained(\"tokenizer\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "3FVtbmrzDkF8",
    "outputId": "bcbae7d2-f35a-4118-81f4-10f7638f7e50"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "merges.txt\t\t tokenizer_config.json\tvocab.json\n",
      "special_tokens_map.json  tokenizer.json\n"
     ]
    }
   ],
   "source": [
    "!ls tokenizer"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "BhTEgIaLEDRo"
   },
   "source": [
    "Implement CollateFN using fast tokenizers.\n",
    "This function basically takes care of proper tokenization and batches of sequences. This way you don't need to create your batches manually. Find out more about Tokenizers [here](https://github.com/huggingface/tokenizers/tree/master/bindings/python)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "3SCLBZsMDn4s"
   },
   "outputs": [],
   "source": [
    "class TokenizersCollateFn:\n",
    "    def __init__(self, max_tokens=512):\n",
    "\n",
    "        ## RoBERTa uses BPE tokenizer similar to GPT\n",
    "        t = ByteLevelBPETokenizer(\n",
    "            \"tokenizer/vocab.json\",\n",
    "            \"tokenizer/merges.txt\"\n",
    "        )\n",
    "        t._tokenizer.post_processor = BertProcessing(\n",
    "            (\"</s>\", t.token_to_id(\"</s>\")),\n",
    "            (\"<s>\", t.token_to_id(\"<s>\")),\n",
    "        )\n",
    "        t.enable_truncation(max_tokens)\n",
    "        t.enable_padding(length=max_tokens, pad_id=t.token_to_id(\"<pad>\"))\n",
    "        self.tokenizer = t\n",
    "\n",
    "    def __call__(self, batch):\n",
    "        encoded = self.tokenizer.encode_batch([x[0] for x in batch])\n",
    "        sequences_padded = torch.tensor([enc.ids for enc in encoded])\n",
    "        attention_masks_padded = torch.tensor([enc.attention_mask for enc in encoded])\n",
    "        labels = torch.tensor([x[1] for x in batch])\n",
    "        \n",
    "        return (sequences_padded, attention_masks_padded), labels"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "4hu70Ng0Eqls"
   },
   "source": [
    "## Getting the Data and Preview it\n",
    "Below we are going to load the data and show you how to create the splits. However, we don't need to split the data manually becuase I have already created the splits and stored those files seperately which you can quickly download below:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "JZ3SoJH3fUsq",
    "outputId": "4b4adfed-68b5-4673-f010-96ac2e578804"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "--2022-04-02 02:29:43--  https://www.dropbox.com/s/ikkqxfdbdec3fuj/test.txt\n",
      "Resolving www.dropbox.com (www.dropbox.com)... 162.125.80.18, 2620:100:601b:18::a27d:812\n",
      "Connecting to www.dropbox.com (www.dropbox.com)|162.125.80.18|:443... connected.\n",
      "HTTP request sent, awaiting response... 301 Moved Permanently\n",
      "Location: /s/raw/ikkqxfdbdec3fuj/test.txt [following]\n",
      "--2022-04-02 02:29:44--  https://www.dropbox.com/s/raw/ikkqxfdbdec3fuj/test.txt\n",
      "Reusing existing connection to www.dropbox.com:443.\n",
      "HTTP request sent, awaiting response... 302 Found\n",
      "Location: https://uc47a044c3484cacd77f1998a9af.dl.dropboxusercontent.com/cd/0/inline/BindkPg73vrwbieJ5UPi7q0aVj4zSdWDIAJEXTLje7fzw332Q4is5tqTFH6-p-vAaxn9i19935V16q5W7VLMnWygO4NIy8JPhtF_og-e53ggh1bjKDWOubFHkfDLdqFeUpBy_deZU3Mq24B26W7AuDV2n-mg0iFL1CUofID0gxW3Kw/file# [following]\n",
      "--2022-04-02 02:29:44--  https://uc47a044c3484cacd77f1998a9af.dl.dropboxusercontent.com/cd/0/inline/BindkPg73vrwbieJ5UPi7q0aVj4zSdWDIAJEXTLje7fzw332Q4is5tqTFH6-p-vAaxn9i19935V16q5W7VLMnWygO4NIy8JPhtF_og-e53ggh1bjKDWOubFHkfDLdqFeUpBy_deZU3Mq24B26W7AuDV2n-mg0iFL1CUofID0gxW3Kw/file\n",
      "Resolving uc47a044c3484cacd77f1998a9af.dl.dropboxusercontent.com (uc47a044c3484cacd77f1998a9af.dl.dropboxusercontent.com)... 162.125.8.15, 2620:100:601c:15::a27d:60f\n",
      "Connecting to uc47a044c3484cacd77f1998a9af.dl.dropboxusercontent.com (uc47a044c3484cacd77f1998a9af.dl.dropboxusercontent.com)|162.125.8.15|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 206760 (202K) [text/plain]\n",
      "Saving to: ‘test.txt’\n",
      "\n",
      "test.txt            100%[===================>] 201.91K  --.-KB/s    in 0.05s   \n",
      "\n",
      "2022-04-02 02:29:45 (3.82 MB/s) - ‘test.txt’ saved [206760/206760]\n",
      "\n",
      "--2022-04-02 02:29:45--  https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt\n",
      "Resolving www.dropbox.com (www.dropbox.com)... 162.125.80.18, 2620:100:601b:18::a27d:812\n",
      "Connecting to www.dropbox.com (www.dropbox.com)|162.125.80.18|:443... connected.\n",
      "HTTP request sent, awaiting response... 301 Moved Permanently\n",
      "Location: /s/raw/1pzkadrvffbqw6o/train.txt [following]\n",
      "--2022-04-02 02:29:46--  https://www.dropbox.com/s/raw/1pzkadrvffbqw6o/train.txt\n",
      "Reusing existing connection to www.dropbox.com:443.\n",
      "HTTP request sent, awaiting response... 302 Found\n",
      "Location: https://uc28e6937dfec019d31854dd7ae5.dl.dropboxusercontent.com/cd/0/inline/BilN3fBwXofFrI1cRcd9FtYqHNPbVbTn1_yppqDJ7X-LrJJhV_knWzdwIaw03J-6tBnJCcH5rd6QvOFO2_WQ0FpfkezzCc0a1OfVMsJ2J0VvVEYH-893SFHLPPHpK-vTGrLX_Pq136GsnSKOvUD4_j6IcG29LQZIegH-zv_h6dgUbw/file# [following]\n",
      "--2022-04-02 02:29:46--  https://uc28e6937dfec019d31854dd7ae5.dl.dropboxusercontent.com/cd/0/inline/BilN3fBwXofFrI1cRcd9FtYqHNPbVbTn1_yppqDJ7X-LrJJhV_knWzdwIaw03J-6tBnJCcH5rd6QvOFO2_WQ0FpfkezzCc0a1OfVMsJ2J0VvVEYH-893SFHLPPHpK-vTGrLX_Pq136GsnSKOvUD4_j6IcG29LQZIegH-zv_h6dgUbw/file\n",
      "Resolving uc28e6937dfec019d31854dd7ae5.dl.dropboxusercontent.com (uc28e6937dfec019d31854dd7ae5.dl.dropboxusercontent.com)... 162.125.3.15, 2620:100:601c:15::a27d:60f\n",
      "Connecting to uc28e6937dfec019d31854dd7ae5.dl.dropboxusercontent.com (uc28e6937dfec019d31854dd7ae5.dl.dropboxusercontent.com)|162.125.3.15|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 1658616 (1.6M) [text/plain]\n",
      "Saving to: ‘train.txt’\n",
      "\n",
      "train.txt           100%[===================>]   1.58M  --.-KB/s    in 0.07s   \n",
      "\n",
      "2022-04-02 02:29:46 (24.0 MB/s) - ‘train.txt’ saved [1658616/1658616]\n",
      "\n",
      "--2022-04-02 02:29:46--  https://www.dropbox.com/s/2mzialpsgf9k5l3/val.txt\n",
      "Resolving www.dropbox.com (www.dropbox.com)... 162.125.80.18, 2620:100:601b:18::a27d:812\n",
      "Connecting to www.dropbox.com (www.dropbox.com)|162.125.80.18|:443... connected.\n",
      "HTTP request sent, awaiting response... 301 Moved Permanently\n",
      "Location: /s/raw/2mzialpsgf9k5l3/val.txt [following]\n",
      "--2022-04-02 02:29:47--  https://www.dropbox.com/s/raw/2mzialpsgf9k5l3/val.txt\n",
      "Reusing existing connection to www.dropbox.com:443.\n",
      "HTTP request sent, awaiting response... 302 Found\n",
      "Location: https://uc33b67c4e8a3d54070f7e57d2c2.dl.dropboxusercontent.com/cd/0/inline/BinDvaaKEwfVAZXuoMsG0dUJTaMOqqlvpcEUBGJ6T-1huQAZIZlOy5DP5WiDm60aNF3zascBKEBnyXQsBIdcOfUvxkpMqw_NNwWfEUYlRRc4D9qEYnm4DYLIfhW2TJtRKNBzB1bPC2KNpOCZTFbkMkeQHGaVEZ4Tk214eeFK-seb1g/file# [following]\n",
      "--2022-04-02 02:29:48--  https://uc33b67c4e8a3d54070f7e57d2c2.dl.dropboxusercontent.com/cd/0/inline/BinDvaaKEwfVAZXuoMsG0dUJTaMOqqlvpcEUBGJ6T-1huQAZIZlOy5DP5WiDm60aNF3zascBKEBnyXQsBIdcOfUvxkpMqw_NNwWfEUYlRRc4D9qEYnm4DYLIfhW2TJtRKNBzB1bPC2KNpOCZTFbkMkeQHGaVEZ4Tk214eeFK-seb1g/file\n",
      "Resolving uc33b67c4e8a3d54070f7e57d2c2.dl.dropboxusercontent.com (uc33b67c4e8a3d54070f7e57d2c2.dl.dropboxusercontent.com)... 162.125.3.15, 2620:100:6022:15::a27d:420f\n",
      "Connecting to uc33b67c4e8a3d54070f7e57d2c2.dl.dropboxusercontent.com (uc33b67c4e8a3d54070f7e57d2c2.dl.dropboxusercontent.com)|162.125.3.15|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 204240 (199K) [text/plain]\n",
      "Saving to: ‘val.txt’\n",
      "\n",
      "val.txt             100%[===================>] 199.45K  --.-KB/s    in 0.03s   \n",
      "\n",
      "2022-04-02 02:29:48 (5.57 MB/s) - ‘val.txt’ saved [204240/204240]\n",
      "\n"
     ]
    }
   ],
   "source": [
    "!wget https://www.dropbox.com/s/ikkqxfdbdec3fuj/test.txt\n",
    "!wget https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt\n",
    "!wget https://www.dropbox.com/s/2mzialpsgf9k5l3/val.txt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "r_03fxufWX_G"
   },
   "outputs": [],
   "source": [
    "## export the datasets as txt files\n",
    "## EXERCISE: Change this to an address\n",
    "\n",
    "train_path = \"train.txt\"\n",
    "test_path = \"test.txt\"\n",
    "val_path = \"val.txt\"\n",
    "\n",
    "## emotion labels\n",
    "label2int = {\n",
    "  \"sadness\": 0,\n",
    "  \"joy\": 1,\n",
    "  \"love\": 2,\n",
    "  \"anger\": 3,\n",
    "  \"fear\": 4,\n",
    "  \"surprise\": 5\n",
    "}\n",
    "\n",
    "emotions = [ \"sadness\", \"joy\", \"love\", \"anger\", \"fear\", \"surprise\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "-FJ-wN1_zmkV"
   },
   "source": [
    "### A Quick Look at the dataset\n",
    "Below is a few code sniphets to get a good idea of the dataset we are using here. You can skip this whole subsection if you like."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "t23zHggkEpc-",
    "outputId": "60c12470-7ff0-43fb-a867-321fd0266862"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "--2022-04-02 01:07:36--  https://www.dropbox.com/s/607ptdakxuh5i4s/merged_training.pkl\n",
      "Resolving www.dropbox.com (www.dropbox.com)... 162.125.3.18, 2620:100:6018:18::a27d:312\n",
      "Connecting to www.dropbox.com (www.dropbox.com)|162.125.3.18|:443... connected.\n",
      "HTTP request sent, awaiting response... 301 Moved Permanently\n",
      "Location: /s/raw/607ptdakxuh5i4s/merged_training.pkl [following]\n",
      "--2022-04-02 01:07:36--  https://www.dropbox.com/s/raw/607ptdakxuh5i4s/merged_training.pkl\n",
      "Reusing existing connection to www.dropbox.com:443.\n",
      "HTTP request sent, awaiting response... 302 Found\n",
      "Location: https://uc85825e9ae09b5cee10fd3c90a5.dl.dropboxusercontent.com/cd/0/inline/Biks1uZUpPg-4hPIU8S6gBvKR2bKR8WtT5cwtOf4Kc8EbggGQBsIjoyL2n3m3mrxFeoFYX6uWurmaLJRYsVqqWRzGyzLF_JBk6frRedoLHUAC4BoZMNUV624AW9XwRGyXvyYa0W4_P6I0lHGmx9xgcGpqkS0C4_J99RwktDpqp8BuQ/file# [following]\n",
      "--2022-04-02 01:07:37--  https://uc85825e9ae09b5cee10fd3c90a5.dl.dropboxusercontent.com/cd/0/inline/Biks1uZUpPg-4hPIU8S6gBvKR2bKR8WtT5cwtOf4Kc8EbggGQBsIjoyL2n3m3mrxFeoFYX6uWurmaLJRYsVqqWRzGyzLF_JBk6frRedoLHUAC4BoZMNUV624AW9XwRGyXvyYa0W4_P6I0lHGmx9xgcGpqkS0C4_J99RwktDpqp8BuQ/file\n",
      "Resolving uc85825e9ae09b5cee10fd3c90a5.dl.dropboxusercontent.com (uc85825e9ae09b5cee10fd3c90a5.dl.dropboxusercontent.com)... 162.125.4.15, 2620:100:6018:15::a27d:30f\n",
      "Connecting to uc85825e9ae09b5cee10fd3c90a5.dl.dropboxusercontent.com (uc85825e9ae09b5cee10fd3c90a5.dl.dropboxusercontent.com)|162.125.4.15|:443... connected.\n",
      "HTTP request sent, awaiting response... 302 Found\n",
      "Location: /cd/0/inline2/Bikixw43BxlYqPt-13I6GiwXazCK74atIS0dtaeeTf_dj-Wkjl_9eczKwufjPW3iO25EISJ5q5RXb8IME7cJfu4G9vGjXM9klJeLpUoZXzNMHsECzUtKaoyOoCnmaUvUrP_r4-YJXoNwkYnJxXUeOXH-aBXaLnKBsc3cOdc_2sTUxrCVd244Mu7EIaTG3mAdy76eCK3SgNiTTyExcShQVZz7-xmtJ_qKccsnJC6sdAOuATCkS42esAwgk88MiWyOsUi5N0DvfRnOb6kioBX1cObwiZ-bwb53p-fP_Os0WeidckaaHkkh24Wij4rtPJaP68L8A2B1_wTkTvNZt4B1YOGG_-I08i-6KlrRSbz-1EnbIjXfS-_589CBiZDbAjJ-tbH61_RKak64LiE9BPo7FHJtlO3vmIsFMyjW1Pg_N7EU1A/file [following]\n",
      "--2022-04-02 01:07:37--  https://uc85825e9ae09b5cee10fd3c90a5.dl.dropboxusercontent.com/cd/0/inline2/Bikixw43BxlYqPt-13I6GiwXazCK74atIS0dtaeeTf_dj-Wkjl_9eczKwufjPW3iO25EISJ5q5RXb8IME7cJfu4G9vGjXM9klJeLpUoZXzNMHsECzUtKaoyOoCnmaUvUrP_r4-YJXoNwkYnJxXUeOXH-aBXaLnKBsc3cOdc_2sTUxrCVd244Mu7EIaTG3mAdy76eCK3SgNiTTyExcShQVZz7-xmtJ_qKccsnJC6sdAOuATCkS42esAwgk88MiWyOsUi5N0DvfRnOb6kioBX1cObwiZ-bwb53p-fP_Os0WeidckaaHkkh24Wij4rtPJaP68L8A2B1_wTkTvNZt4B1YOGG_-I08i-6KlrRSbz-1EnbIjXfS-_589CBiZDbAjJ-tbH61_RKak64LiE9BPo7FHJtlO3vmIsFMyjW1Pg_N7EU1A/file\n",
      "Reusing existing connection to uc85825e9ae09b5cee10fd3c90a5.dl.dropboxusercontent.com:443.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 49991846 (48M) [application/octet-stream]\n",
      "Saving to: ‘merged_training.pkl’\n",
      "\n",
      "merged_training.pkl 100%[===================>]  47.68M  51.9MB/s    in 0.9s    \n",
      "\n",
      "2022-04-02 01:07:38 (51.9 MB/s) - ‘merged_training.pkl’ saved [49991846/49991846]\n",
      "\n"
     ]
    }
   ],
   "source": [
    "!wget https://www.dropbox.com/s/607ptdakxuh5i4s/merged_training.pkl"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "PQrMSUTRF06B"
   },
   "outputs": [],
   "source": [
    "import pickle\n",
    "\n",
    "## helper function\n",
    "def load_from_pickle(directory):\n",
    "    return pickle.load(open(directory,\"rb\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 315
    },
    "id": "XGz89mNSHaYM",
    "outputId": "1340de4b-868b-4f86-882c-11bd810d4cf6"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.axes._subplots.AxesSubplot at 0x7fd9245da5d0>"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEZCAYAAAB7HPUdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAZbUlEQVR4nO3df7RdZX3n8ffHRH5olQS5zcIkGNQMDo4K9BZodc0olBBACVagOCpZNDazHPzVdqZEp5YpaBfWjo50KmOUaHApEGktKaCYRmkrlB8JMlBAmgvCIimQaGKwUn76mT/2c+UQ7s09F849OznP57XWXWfvZz/nnO+Gm8/Z99nP3ke2iYiIOryg7QIiIqJ/EvoRERVJ6EdEVCShHxFRkYR+RERFEvoRERWZMPQlHSTplo6fhyV9WNK+ktZI2lAeZ5b+knS+pBFJt0o6rOO1Fpf+GyQtnsodi4iIZ9Nk5ulLmgZsAo4AzgS22j5P0jJgpu2zJB0PfAA4vvT7rO0jJO0LrAOGAQPrgV+xva2nexQREeOaPsn+RwN3275P0iLgzaV9JXANcBawCLjIzafJ9ZJmSNq/9F1jeyuApDXAQuDi8d5sv/3287x58yZZYkRE3davX/8j20NjbZts6J/G0yE9y/YDZflBYFZZng3c3/GcjaVtvPZnkLQUWApwwAEHsG7dukmWGBFRN0n3jbet6xO5kvYATgS+vuO2clTfk/s52F5ue9j28NDQmB9UERHxHE1m9s5xwM22HyrrD5VhG8rj5tK+CZjb8bw5pW289oiI6JPJhP47eeb4+2pgdAbOYuDyjvbTyyyeI4HtZRjoamCBpJllps+C0hYREX3S1Zi+pBcDxwD/paP5PGCVpCXAfcCppf0qmpk7I8AjwBkAtrdKOhe4qfQ7Z/SkbkRE9Mekpmz22/DwsHMiNyJiciSttz081rZckRsRUZGEfkRERRL6EREVmezFWbuFecuu7Ov73XveCX19v4iI5ypH+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUpKvQlzRD0mWSfiDpTkm/JmlfSWskbSiPM0tfSTpf0oikWyUd1vE6i0v/DZIWT9VORUTE2Lo90v8s8C3brwHeANwJLAPW2p4PrC3rAMcB88vPUuACAEn7AmcDRwCHA2ePflBERER/TBj6kvYB/iNwIYDtx23/BFgErCzdVgInleVFwEVuXA/MkLQ/cCywxvZW29uANcDCnu5NRETsVDdH+gcCW4AvSfq+pC9KejEwy/YDpc+DwKyyPBu4v+P5G0vbeO3PIGmppHWS1m3ZsmVyexMRETvVTehPBw4DLrB9KPAznh7KAcC2AfeiINvLbQ/bHh4aGurFS0ZERNFN6G8ENtq+oaxfRvMh8FAZtqE8bi7bNwFzO54/p7SN1x4REX0yYejbfhC4X9JBpelo4A5gNTA6A2cxcHlZXg2cXmbxHAlsL8NAVwMLJM0sJ3AXlLaIiOiT6V32+wDwVUl7APcAZ9B8YKyStAS4Dzi19L0KOB4YAR4pfbG9VdK5wE2l3zm2t/ZkLyIioitdhb7tW4DhMTYdPUZfA2eO8zorgBWTKTAiInqn2yP92IXMW3ZlX9/v3vNO6Ov7RcTUyW0YIiIqktCPiKhIQj8ioiIJ/YiIiiT0IyIqktCPiKhIQj8ioiIJ/YiIiiT0IyIqktCPiKhIQj8ioiIJ/YiIiiT0IyIqktCPiKhIQj8ioiIJ/YiIiiT0IyIqktCPiKhIQj8ioiIJ/YiIiiT0IyIq0lXoS7pX0m2SbpG0rrTtK2mNpA3lcWZpl6TzJY1IulXSYR2vs7j03yBp8dTsUkREjGcyR/pvsX2I7eGyvgxYa3s+sLasAxwHzC8/S4ELoPmQAM4GjgAOB84e/aCIiIj+eD7DO4uAlWV5JXBSR/tFblwPzJC0P3AssMb2VtvbgDXAwufx/hERMUndhr6Bb0taL2lpaZtl+4Gy/CAwqyzPBu7veO7G0jZe+zNIWippnaR1W7Zs6bK8iIjoxvQu+73J9iZJvwyskfSDzo22Lcm9KMj2cmA5wPDwcE9eMyIiGl0d6dveVB43A9+gGZN/qAzbUB43l+6bgLkdT59T2sZrj4iIPpkw9CW9WNJLRpeBBcA/AauB0Rk4i4HLy/Jq4PQyi+dIYHsZBroaWCBpZjmBu6C0RUREn3QzvDML+Iak0f5fs/0tSTcBqyQtAe4DTi39rwKOB0aAR4AzAGxvlXQucFPpd47trT3bk4iImNCEoW/7HuANY7T/GDh6jHYDZ47zWiuAFZMvMyIieiFX5EZEVCShHxFRkYR+RERFEvoRERVJ6EdEVCShHxFRkYR+RERFEvoRERVJ6EdEVCShHxFRkYR+RERFEvoRERVJ6EdEVCShHxFRkYR+RERFEvoRERVJ6EdEVCShHxFRkYR+RERFEvoRERVJ6EdEVCShHxFRka5DX9I0Sd+XdEVZP1DSDZJGJF0qaY/SvmdZHynb53W8xkdK+12Sju31zkRExM5N5kj/Q8CdHeufBD5j+9XANmBJaV8CbCvtnyn9kHQwcBrwWmAh8DlJ055f+RERMRldhb6kOcAJwBfLuoCjgMtKl5XASWV5UVmnbD+69F8EXGL7Mds/BEaAw3uxExER0Z1uj/T/N/AHwM/L+suAn9h+sqxvBGaX5dnA/QBl+/bS/xftYzznFyQtlbRO0rotW7ZMYlciImIiE4a+pLcCm22v70M92F5ue9j28NDQUD/eMiKiGtO76PNG4ERJxwN7AS8FPgvMkDS9HM3PATaV/puAucBGSdOBfYAfd7SP6nxORET0wYRH+rY/YnuO7Xk0J2K/Y/tdwHeBk0u3xcDlZXl1Wads/45tl/bTyuyeA4H5wI0925OIiJhQN0f64zkLuETSx4HvAxeW9guBr0gaAbbSfFBg+3ZJq4A7gCeBM20/9TzePyIiJmlSoW/7GuCasnwPY8y+sf0ocMo4z/8E8InJFhkREb2RK3IjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqMiEoS9pL0k3Svp/km6X9Mel/UBJN0gakXSppD1K+55lfaRsn9fxWh8p7XdJOnaqdioiIsbWzZH+Y8BRtt8AHAIslHQk8EngM7ZfDWwDlpT+S4Btpf0zpR+SDgZOA14LLAQ+J2laL3cmIiJ2bsLQd+Nfy+oLy4+Bo4DLSvtK4KSyvKisU7YfLUml/RLbj9n+ITACHN6TvYiIiK50NaYvaZqkW4DNwBrgbuAntp8sXTYCs8vybOB+gLJ9O/CyzvYxntP5XkslrZO0bsuWLZPfo4iIGFdXoW/7KduHAHNojs5fM1UF2V5ue9j28NDQ0FS9TURElSY1e8f2T4DvAr8GzJA0vWyaA2wqy5uAuQBl+z7Ajzvbx3hORET0QTezd4YkzSjLewPHAHfShP/Jpdti4PKyvLqsU7Z/x7ZL+2llds+BwHzgxl7tSERETGz6xF3YH1hZZtq8AFhl+wpJdwCXSPo48H3gwtL/QuArkkaArTQzdrB9u6RVwB3Ak8CZtp/q7e5ERMTOTBj6tm8FDh2j/R7GmH1j+1HglHFe6xPAJyZfZkRE9EKuyI2IqEhCPyKiIt2M6Uf01bxlV/b1/e4974S+vl9Em3KkHxFRkYR+RERFEvoRERVJ6EdEVCShHxFRkYR+RERFEvoRERVJ6EdEVCShHxFRkYR+RERFchuGiD7LbSaiTTnSj4ioSEI/IqIiCf2IiIok9CMiKpLQj4ioSEI/IqIiCf2IiIpMGPqS5kr6rqQ7JN0u6UOlfV9JayRtKI8zS7sknS9pRNKtkg7reK3Fpf8GSYunbrciImIs3RzpPwn8vu2DgSOBMyUdDCwD1tqeD6wt6wDHAfPLz1LgAmg+JICzgSOAw4GzRz8oIiKiPyYMfdsP2L65LP8UuBOYDSwCVpZuK4GTyvIi4CI3rgdmSNofOBZYY3ur7W3AGmBhT/cmIiJ2alJj+pLmAYcCNwCzbD9QNj0IzCrLs4H7O562sbSN177jeyyVtE7Sui1btkymvIiImEDXoS/pl4C/BD5s++HObbYNuBcF2V5ue9j28NDQUC9eMiIiiq5CX9ILaQL/q7b/qjQ/VIZtKI+bS/smYG7H0+eUtvHaIyKiT7qZvSPgQuBO25/u2LQaGJ2Bsxi4vKP99DKL50hgexkGuhpYIGlmOYG7oLRFRESfdHNr5TcC7wFuk3RLafsocB6wStIS4D7g1LLtKuB4YAR4BDgDwPZWSecCN5V+59je2pO9iIiIrkwY+ra/B2iczUeP0d/AmeO81gpgxWQKjIiI3skVuRERFUnoR0RUJKEfEVGRhH5EREUS+hERFelmymZERFfmLbuyr+9373kn9PX9BkGO9CMiKpLQj4ioSEI/IqIiCf2IiIok9CMiKpLQj4ioSEI/IqIiCf2IiIok9CMiKpLQj4ioSEI/IqIiCf2IiIok9CMiKpLQj4ioSEI/IqIiCf2IiIpMGPqSVkjaLOmfOtr2lbRG0obyOLO0S9L5kkYk3SrpsI7nLC79N0haPDW7ExERO9PNkf6XgYU7tC0D1tqeD6wt6wDHAfPLz1LgAmg+JICzgSOAw4GzRz8oIiKifyYMfdt/D2zdoXkRsLIsrwRO6mi/yI3rgRmS9geOBdbY3mp7G7CGZ3+QRETEFHuuY/qzbD9Qlh8EZpXl2cD9Hf02lrbx2p9F0lJJ6ySt27Jly3MsLyIixvK8T+TaNuAe1DL6esttD9seHhoa6tXLRkQEzz30HyrDNpTHzaV9EzC3o9+c0jZee0RE9NFzDf3VwOgMnMXA5R3tp5dZPEcC28sw0NXAAkkzywncBaUtIiL6aPpEHSRdDLwZ2E/SRppZOOcBqyQtAe4DTi3drwKOB0aAR4AzAGxvlXQucFPpd47tHU8OR0TEFJsw9G2/c5xNR4/R18CZ47zOCmDFpKqLiIieyhW5EREVSehHRFQkoR8RUZEJx/QjIqIxb9mVfX2/e887oeevmSP9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIirS99CXtFDSXZJGJC3r9/tHRNSsr6EvaRrwF8BxwMHAOyUd3M8aIiJq1u8j/cOBEdv32H4cuARY1OcaIiKqJdv9ezPpZGCh7feW9fcAR9h+f0efpcDSsnoQcFffCoT9gB/18f36Lfu3exvk/RvkfYP+798rbA+NtWF6H4voiu3lwPI23lvSOtvDbbx3P2T/dm+DvH+DvG+wa+1fv4d3NgFzO9bnlLaIiOiDfof+TcB8SQdK2gM4DVjd5xoiIqrV1+Ed209Kej9wNTANWGH79n7WMIFWhpX6KPu3exvk/RvkfYNdaP/6eiI3IiLalStyIyIqktCPiKhIQj8ioiJVh76kt0mq+r/B7kqNuRP3jIhOtQfebwEbJP2ppNe0XcxUkzRT0uvbrqMX3MxAuKrtOqaKpGmSftB2HVNN0isk/UZZ3lvSS9quqVckzZJ0oaRvlvWDJS1pu66qQ9/2u4FDgbuBL0v6R0lLB+wX7xpJL5W0L3Az8AVJn267rh65WdKvtl3EVLD9FHCXpAParmWqSPod4DLg86VpDvDX7VXUc1+mmZ7+8rL+z8CHW6umqDr0AWw/TPOLdwmwP/B2mjD5QKuF9c4+ZR9/E7jI9hHAb7RcU68cAfyjpLsl3SrpNkm3tl1UD80Ebpe0VtLq0Z+2i+qhM4E3Ag8D2N4A/HKrFfXWfrZXAT+H5jol4Kl2S9oF773TT5JOBM4AXg1cBBxue7OkFwF3AH/eZn09Ml3S/sCpwP9ou5geO7btAqbYx9ouYIo9ZvtxSQBImg4M0oVDP5P0Mso+SToS2N5uSZWHPvAO4DO2/76z0fYju8LYW4+cQ/Mn5vds3yTplcCGlmvqCdv3SXoTMN/2lyQNAb/Udl29Yvvv2q5hiv2dpI8Ce0s6BvivwN+0XFMv/R7NbWZeJelaYAg4ud2SckUukmYBo+PCN9re3GY90T1JZwPDwEG2/52klwNft/3GlkvriXJk+OfAvwf2oLl1yc9sv7TVwnqkzJxbAiwARHNw8kUPUCiVv14Ootm/u2w/0XJJdY/pSzoFuBE4hWb444Zyz/+BUWYmvVTSC8vY8BZJ7267rh55O3Ai8DMA2/8CDMxJeOD/AO+k+ctsb+C9NN88NyhOojnPdIrtk21/YcAC/xRg73J/sZOASyUd1nJZdYc+8IfAr9pebPt0mm/2GrRx1AXlRO5bgXtpzl/891Yr6p3HS0iMjpm+uOV6es72CDDN9lO2vwQsbLumHnob8M+SviLpreWoeJB8zPZPyxDk0cCFwAUt11R96L9gh+GcHzN4/01G/yGdQDP00fqJpB5aJenzwIwy/e9vgS+0XFMvPVJuQX5L+Yvtdxmg30/bo5Movk7zF83dkr7YblU9NTpT5wTgC7avpBmma9WgfbJO1rckXQ1cXNZPA77ZYj1T4Ypykc+/Ae8rJzsfbbmmnrD9Z+UE4MM046Z/ZHtNy2X10ntoQv79wO/SfAHRO1qtqMdsP1EuXjLNENZJNMNYg2BTOSg5BvikpD3ZBT60cyJX+k2aucIA/2B7kC4OAaBcmLXd9lNlCOQlth9su66YmKS9gQNs9/O7ovtC0nE0V8W/GbgGWAV8u8xn3+2Vqd8LgdtsbyhTp19n+9ut1lVj6Ev6nu03SfopzRGGOjb/HNgKfMr251opsIfKL97v0QTHUknzaWa7XNFyac9bx/+/TtuBdcDv276n/1X1jqS3AX8G7GH7QEmHAOfYPrHl0npC0sXApcA3bT/Wdj29Iumlth8uB1vPYntrv2vqVGXoT6RcUHGd7YParuX5knQpsB443fZ/KB8C19k+pOXSnjdJ5wIbga/RfHCfBryK5nYT77P95vaqe/4krQeOAq6xfWhpu83269qtrHcGccq0pCtsv1XSD3n2QaVtv7Kl0oBdYHxpV2T7xzR/cg6CV9n+U+AJaC4845m/hLuzE21/3vZPbT9sezlwrO1LaW5hsLt7YowT7wNzlDaoU6ZL4Av4T7ZfafvAjp9WAx9yIndcth9ou4YeebyMC49Oa3wVMCh/Sj8i6VSaeydBc7Xj6EnqQQjH2yX9Z2BaGZb7IHBdyzX10uiU6c0AZZLB3/L0/8/dlm1LuhLY5f4qy5H+4Dsb+BYwV9JXgbXAH7RbUs+8i2aGy2bgobL87vIh9/42C3s+JH2lLN4NvJbmQ/pimllKrd+lsYcGfcr0LnkX2IzpV6CcoziSZljnets/armk2AlJd9DcCfWbwFt23N72icBekfQp4PU8PWX6t4BbbZ/VXlW9U6ZKvxq4j+aqcdH8EdDqd1ok9CsgaTbwCjqG83a8ydzuqAwH/A4wj2fu22+3VVMvSPog8D7glcCmzk3sAicCe0nSO3jmlOlvtFlPL0l6xVjttu/rdy2dEvoDTtInaY6gbqfc15smOHb7aX+SrgP+gWZ20i/uU277L1srqockXWD7fW3XEc9dudfOm2jOMV1r++aWS0roDzpJdwGvH6R50KMk3TIIU09rM871FfD0XzKDchfRP6KZmfRXpekkmluhfLy9qhL6A69c4n6K7X9tu5Zek/RxmmsOBva7cmP3VQ643mD70bK+N3BL29f/ZMrm4HuE5oZda+mYqmn7g+2V1DMfAj4q6TGa6xAG6kgxdnv/AuzF09OI9+SZ52hakdAffKvLz8Cx/ZJyqft8mn9cEbuS7TTXWqyhGc46BrhR0vnQ3oFXhndityXpvTRH+3OAW2impV5n++hWC4sAJC3e2XbbK/tVS6cc6Q8oSbexk6tS254r3CMforlvy/W23yLpNcCftFxTBJKm0XyB0bvarmVHCf3B9dbyeGZ5HL3K890Mxi0KAB61/agkJO1p+weSdvub5MXur9zG/BWS9rD9eNv1dEroD6jRC0AkHTN6h8biLEk3A8vaqaynNkqaAfw1sEbSNpqrHyN2BfcA10paTfkeZwDbn26vpIR+DSTpjbavLSu/zoDc38T228vi/5T0XWAfmvsMRewK7i4/LwBe0nItv5ATuQNO0q8AK2gCUcA24Ld3hSsDI6L/EvqVkLQPwIB9MXrELqv89fmsgLV9VAvl/EKGdyog6QSaW/Tu1Xy3A9g+p9WiIgbff+tY3ovmS+1b//7fhP6Ak/R/gRfR3KL3izRfNHJjq0VFVMD2+h2arpXU+r+9hP7g+3Xbr5d0q+0/lvS/aO7THhFTaIcvRn8BMExzbq1VCf3BN3rfj0ckvRzYCuzfYj0RtVjP01+M/gRwL7CkzYJgQKbuxU79TZnL/ingZuCHwNfaLSmiCmcBh9g+kObiyJ/R3ACxVQn9wfcD4KnyxSJ/AVxPczFTREytP7T9sKQ3AUfRnFO7oOWaEvoV+Jjtn+5qv3gRFRj9NrcTgC/YvhLYo8V6gIR+DXbJX7yICmyS9Hmaryu9StKe7AKZm4uzBpykK2i+uOEY4DDg34Abbb+h1cIiBpykFwELgdtsb5C0P/A6299uta6E/mDbVX/xIqIdCf2IiIq0Pr4UERH9k9CPiKhIQj8ioiIJ/YiIivx/xQTNrHTszP8AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "data = load_from_pickle(directory=\"merged_training.pkl\")\n",
    "\n",
    "## using a sample\n",
    "data= data[data[\"emotions\"].isin(emotions)]\n",
    "\n",
    "\n",
    "data = data.sample(n=20000);\n",
    "\n",
    "data.emotions.value_counts().plot.bar()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "Comaf36-Hb6X",
    "outputId": "bd2ef6e3-5a10-4443-d5ea-2add82ba033f"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "text        20000\n",
       "emotions    20000\n",
       "dtype: int64"
      ]
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.count()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "jYxc8fx_H3ad"
   },
   "source": [
    "Data has been preprocessed already, using technique from this paper: https://www.aclweb.org/anthology/D18-1404/"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 206
    },
    "id": "gYKK7ujRHfRt",
    "outputId": "04993b5a-7487-4175-8638-8860020e194d"
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "  <div id=\"df-768c72c3-7f1d-4346-a1d6-34016f0a7435\">\n",
       "    <div class=\"colab-df-container\">\n",
       "      <div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>text</th>\n",
       "      <th>emotions</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>35968</th>\n",
       "      <td>i feel fantastic and i m still alive pagetitle...</td>\n",
       "      <td>joy</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>30417</th>\n",
       "      <td>i were asked recently about making a lightweig...</td>\n",
       "      <td>love</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>49194</th>\n",
       "      <td>i was small i always feel jealous of my brothe...</td>\n",
       "      <td>anger</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5172</th>\n",
       "      <td>i am feeling hopeless and this is my therapy</td>\n",
       "      <td>sadness</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>77433</th>\n",
       "      <td>i know how you feel i was physically abused as...</td>\n",
       "      <td>sadness</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>\n",
       "      <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-768c72c3-7f1d-4346-a1d6-34016f0a7435')\"\n",
       "              title=\"Convert this dataframe to an interactive table.\"\n",
       "              style=\"display:none;\">\n",
       "        \n",
       "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
       "       width=\"24px\">\n",
       "    <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
       "    <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
       "  </svg>\n",
       "      </button>\n",
       "      \n",
       "  <style>\n",
       "    .colab-df-container {\n",
       "      display:flex;\n",
       "      flex-wrap:wrap;\n",
       "      gap: 12px;\n",
       "    }\n",
       "\n",
       "    .colab-df-convert {\n",
       "      background-color: #E8F0FE;\n",
       "      border: none;\n",
       "      border-radius: 50%;\n",
       "      cursor: pointer;\n",
       "      display: none;\n",
       "      fill: #1967D2;\n",
       "      height: 32px;\n",
       "      padding: 0 0 0 0;\n",
       "      width: 32px;\n",
       "    }\n",
       "\n",
       "    .colab-df-convert:hover {\n",
       "      background-color: #E2EBFA;\n",
       "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
       "      fill: #174EA6;\n",
       "    }\n",
       "\n",
       "    [theme=dark] .colab-df-convert {\n",
       "      background-color: #3B4455;\n",
       "      fill: #D2E3FC;\n",
       "    }\n",
       "\n",
       "    [theme=dark] .colab-df-convert:hover {\n",
       "      background-color: #434B5C;\n",
       "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
       "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
       "      fill: #FFFFFF;\n",
       "    }\n",
       "  </style>\n",
       "\n",
       "      <script>\n",
       "        const buttonEl =\n",
       "          document.querySelector('#df-768c72c3-7f1d-4346-a1d6-34016f0a7435 button.colab-df-convert');\n",
       "        buttonEl.style.display =\n",
       "          google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
       "\n",
       "        async function convertToInteractive(key) {\n",
       "          const element = document.querySelector('#df-768c72c3-7f1d-4346-a1d6-34016f0a7435');\n",
       "          const dataTable =\n",
       "            await google.colab.kernel.invokeFunction('convertToInteractive',\n",
       "                                                     [key], {});\n",
       "          if (!dataTable) return;\n",
       "\n",
       "          const docLinkHtml = 'Like what you see? Visit the ' +\n",
       "            '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
       "            + ' to learn more about interactive tables.';\n",
       "          element.innerHTML = '';\n",
       "          dataTable['output_type'] = 'display_data';\n",
       "          await google.colab.output.renderOutput(dataTable, element);\n",
       "          const docLink = document.createElement('div');\n",
       "          docLink.innerHTML = docLinkHtml;\n",
       "          element.appendChild(docLink);\n",
       "        }\n",
       "      </script>\n",
       "    </div>\n",
       "  </div>\n",
       "  "
      ],
      "text/plain": [
       "                                                    text emotions\n",
       "35968  i feel fantastic and i m still alive pagetitle...      joy\n",
       "30417  i were asked recently about making a lightweig...     love\n",
       "49194  i was small i always feel jealous of my brothe...    anger\n",
       "5172        i am feeling hopeless and this is my therapy  sadness\n",
       "77433  i know how you feel i was physically abused as...  sadness"
      ]
     },
     "execution_count": 27,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "JXovcl56NFPp"
   },
   "outputs": [],
   "source": [
    "## reset index\n",
    "data.reset_index(drop=True, inplace=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "pSzoz9InH0Ta",
    "outputId": "1dec6c28-d407-408d-dc82-aa9c4370e05c"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array(['joy', 'love', 'anger', 'sadness', 'fear', 'surprise'],\n",
       "      dtype=object)"
      ]
     },
     "execution_count": 29,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "## check unique emotions in the dataset\n",
    "data.emotions.unique()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "rJm31gKShQus"
   },
   "source": [
    "## Split the data and store into individual text files\n",
    "\n",
    "If you are using your own dataset and want to split it for training, you can uncomment the code below. Otherwise, just skip it. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "6ooNxSnPiztL"
   },
   "outputs": [],
   "source": [
    "## uncomment the code below to generate the text files for your train, val, and test datasets.\n",
    "\n",
    "'''\n",
    "from sklearn.model_selection import train_test_split\n",
    "import numpy as np\n",
    "\n",
    "# Creating training and validation sets using an 80-20 split\n",
    "input_train, input_val, target_train, target_val = train_test_split(data.text.to_numpy(), \n",
    "                                                                    data.emotions.to_numpy(), \n",
    "                                                                    test_size=0.2)\n",
    "\n",
    "# Split the validataion further to obtain a holdout dataset (for testing) -- split 50:50\n",
    "input_val, input_test, target_val, target_test = train_test_split(input_val, target_val, test_size=0.5)\n",
    "\n",
    "\n",
    "## create a dataframe for each dataset\n",
    "train_dataset = pd.DataFrame(data={\"text\": input_train, \"class\": target_train})\n",
    "val_dataset = pd.DataFrame(data={\"text\": input_val, \"class\": target_val})\n",
    "test_dataset = pd.DataFrame(data={\"text\": input_test, \"class\": target_test})\n",
    "final_dataset = {\"train\": train_dataset, \"val\": val_dataset , \"test\": test_dataset }\n",
    "\n",
    "train_dataset.to_csv(train_path, sep=\";\",header=False, index=False)\n",
    "val_dataset.to_csv(test_path, sep=\";\",header=False, index=False)\n",
    "test_dataset.to_csv(val_path, sep=\";\",header=False, index=False)\n",
    "'''"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "rAD1J6c0dLp8"
   },
   "source": [
    "## Create the Dataset object"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "aOOI69vwIYcN"
   },
   "source": [
    "Create the Dataset object that will be used to load the different datasets."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "Ktr6xeMuISin"
   },
   "outputs": [],
   "source": [
    "class EmoDataset(Dataset):\n",
    "    def __init__(self, path):\n",
    "        super().__init__()\n",
    "        self.data_column = \"text\"\n",
    "        self.class_column = \"class\"\n",
    "        self.data = pd.read_csv(path, sep=\";\", header=None, names=[self.data_column, self.class_column],\n",
    "                               engine=\"python\")\n",
    "\n",
    "    def __getitem__(self, idx):\n",
    "        return self.data.loc[idx, self.data_column], label2int[self.data.loc[idx, self.class_column]]\n",
    "\n",
    "    def __len__(self):\n",
    "        return self.data.shape[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "9EYQRq3qJH7n"
   },
   "source": [
    "Sanity check"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "uGWw4wGEJGhJ",
    "outputId": "e0983e49-770d-495f-a4d4-50d499ff4011"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "('i now feel compromised and skeptical of the value of every unit of work i put in',\n",
       " 4)"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "ds = EmoDataset(train_path)\n",
    "ds[19]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "0h6tTn9hd6v8"
   },
   "source": [
    "## Training with PyTorchLightning\n",
    "\n",
    "[PyTorchLightning](https://www.pytorchlightning.ai/) is a library that abstracts the complexity of training neural networks with PyTorch. It is built on top of PyTorch and simplifies training.\n",
    "\n",
    "![](https://pytorch-lightning.readthedocs.io/en/latest/_images/pt_to_pl.png)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "RJHhNRcZK7sV"
   },
   "outputs": [],
   "source": [
    "## Methods required by PyTorchLightning\n",
    "\n",
    "class TrainingModule(pl.LightningModule):\n",
    "    def __init__(self, hparams):\n",
    "        super().__init__()\n",
    "        self.model = EmoModel(AutoModelWithLMHead.from_pretrained(\"distilroberta-base\").base_model, len(emotions))\n",
    "        self.loss = nn.CrossEntropyLoss() ## combines LogSoftmax() and NLLLoss()\n",
    "        #self.hparams = hparams\n",
    "        self.hparams.update(vars(hparams))\n",
    "\n",
    "    def step(self, batch, step_name=\"train\"):\n",
    "        X, y = batch\n",
    "        loss = self.loss(self.forward(X), y)\n",
    "        loss_key = f\"{step_name}_loss\"\n",
    "        tensorboard_logs = {loss_key: loss}\n",
    "\n",
    "        return { (\"loss\" if step_name == \"train\" else loss_key): loss, 'log': tensorboard_logs,\n",
    "               \"progress_bar\": {loss_key: loss}}\n",
    "\n",
    "    def forward(self, X, *args):\n",
    "        return self.model(X, *args)\n",
    "\n",
    "    def training_step(self, batch, batch_idx):\n",
    "        return self.step(batch, \"train\")\n",
    "    \n",
    "    def validation_step(self, batch, batch_idx):\n",
    "        return self.step(batch, \"val\")\n",
    "\n",
    "    def validation_end(self, outputs: List[dict]):\n",
    "        loss = torch.stack([x[\"val_loss\"] for x in outputs]).mean()\n",
    "        return {\"val_loss\": loss}\n",
    "        \n",
    "    def test_step(self, batch, batch_idx):\n",
    "        return self.step(batch, \"test\")\n",
    "    \n",
    "    def train_dataloader(self):\n",
    "        return self.create_data_loader(self.hparams.train_path, shuffle=True)\n",
    "\n",
    "    def val_dataloader(self):\n",
    "        return self.create_data_loader(self.hparams.val_path)\n",
    "\n",
    "    def test_dataloader(self):\n",
    "        return self.create_data_loader(self.hparams.test_path)\n",
    "                \n",
    "    def create_data_loader(self, ds_path: str, shuffle=False):\n",
    "        return DataLoader(\n",
    "                    EmoDataset(ds_path),\n",
    "                    batch_size=self.hparams.batch_size,\n",
    "                    shuffle=shuffle,\n",
    "                    collate_fn=TokenizersCollateFn()\n",
    "        )\n",
    "        \n",
    "    @lru_cache()\n",
    "    def total_steps(self):\n",
    "        return len(self.train_dataloader()) // self.hparams.accumulate_grad_batches * self.hparams.epochs\n",
    "\n",
    "    def configure_optimizers(self):\n",
    "        ## use AdamW optimizer -- faster approach to training NNs\n",
    "        ## read: https://www.fast.ai/2018/07/02/adam-weight-decay/\n",
    "        optimizer = AdamW(self.model.parameters(), lr=self.hparams.lr)\n",
    "        lr_scheduler = get_linear_schedule_with_warmup(\n",
    "                    optimizer,\n",
    "                    num_warmup_steps=self.hparams.warmup_steps,\n",
    "                    num_training_steps=self.total_steps(),\n",
    "        )\n",
    "        return [optimizer], [{\"scheduler\": lr_scheduler, \"interval\": \"step\"}]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "OGc7Vw1moHxr"
   },
   "source": [
    "## Finding Learning rate for the model\n",
    "\n",
    "The code below aims to obtain valuable information about the optimal learning rate during a pretraining run. Determine boundary and increase the leanring rate linearly or exponentially.\n",
    "\n",
    "More: https://github.com/davidtvs/pytorch-lr-finder"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 474,
     "referenced_widgets": [
      "69c22be4a46740149cf5ea6823a5eed9",
      "7c615a5ac40b43ad80f49e5b520c7cd5",
      "b4038fd3724d429fb0026753c504c40d",
      "c8b4362c1387438d8bff0a98838c62f6",
      "3c8b0bd72bb34489ba4f7336b04127be",
      "4599afc67ec241fb879ac419d92cb01d",
      "abb8e33775974bdb8718d09b1ba6875b",
      "66f1cd46a86e44558cf2657469a63c62",
      "e0d5d58dd5584898a7fe092a9fb371fb",
      "fd994e14a67a4adf80a480b6ee20afa8",
      "2e849223bca94e42a426180c54ecd8fb"
     ]
    },
    "id": "xL4lNPDFoFyU",
    "outputId": "aa34657a-62da-4718-8495-768b30c9849e"
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/usr/local/lib/python3.7/dist-packages/transformers/models/auto/modeling_auto.py:882: FutureWarning: The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use `AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and `AutoModelForSeq2SeqLM` for encoder-decoder models.\n",
      "  FutureWarning,\n",
      "/usr/local/lib/python3.7/dist-packages/transformers/optimization.py:309: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
      "  FutureWarning,\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "69c22be4a46740149cf5ea6823a5eed9",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/100 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Stopping early, the loss has diverged\n",
      "Learning rate search finished. See the graph with {finder_name}.plot()\n",
      "LR suggestion: steepest gradient\n",
      "Suggested LR: 3.65E-02\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxU5dn4/8+VfSUEEtawy75DZBEXcAEEl1arltrWpYi2LqVafi61j1rbp34fu1i7qNhSXFHrUlGwolXEBYSwExDBgBACSViyZ5LMzPX7YyYxwCQkIZMzSa736zWvyZxzn3OuOWKu3Mu5b1FVjDHGmBOFOR2AMcaY0GQJwhhjTECWIIwxxgRkCcIYY0xAliCMMcYEZAnCGGNMQBFOB9CcUlJStG/fvk6HYYwxrcb69esPq2pqoH1tKkH07duXjIwMp8MwxphWQ0S+rmufNTEZY4wJyBKEMcaYgIKWIESkl4h8KCLbRSRTRH4aoIyIyOMisltEtojIuFr7PCKyyf9aGqw4jTHGBBbMPgg3cJeqbhCRRGC9iLynqttrlbkYGOh/TQSe8L8DlKvqmNMNoqqqiuzsbFwu1+meyoS4mJgY0tLSiIyMdDoUY9qEoCUIVT0IHPT/XCwiO4CeQO0EcTnwrPpmDFwjIh1FpLv/2GaRnZ1NYmIiffv2RUSa67QmxKgqR44cITs7m379+jkdjjFtQov0QYhIX2As8PkJu3oC+2t9zvZvA4gRkQwRWSMi36rn3PP85TLy8/NP2u9yuejcubMlhzZOROjcubPVFI1pRkFPECKSALwGzFfVokYc2kdV04HvAY+JyIBAhVR1oaqmq2p6amrAobyWHNoJ++9s2oKdh4pxVXmcDgMIcoIQkUh8yeEFVX09QJEDQK9an9P821DV6vcsYCW+GkjwqcKaNfDGG773IK2X8dhjj1FWVhaUczdUQUEBf/vb31rsen379uXw4cMAnHXWWU0+z+LFi8nJyWmusIwJGa4qD5f+5RPufGWT06EAwR3FJMA/gB2q+oc6ii0FfugfzTQJKFTVgyKSLCLR/vOkAFM4vu8iOJYvh9694aKL4Prrfe+9e/u2N7O2kiDcbneTjvvss8+afE1LEKatyi+uoNLtZfnWQ7yztdm6YpssmDWIKcAPgPNrDVedJSK3iMgt/jLLgSxgN/A08BP/9qFAhohsBj4EHjlh9FPzW74cvvMdyM6GkhIoKvK9Z2f7tjcxSZSWljJ79mxGjx7NiBEjePnll3n88cfJyclh2rRpTJs2DYAVK1YwefJkxo0bx1VXXUVJSQkA69ev57zzzmP8+PHMmDGDgwd9/2imTp3KT3/6U8aMGcOIESNYu3ZtzfVuvPFGJkyYwNixY3nzzTcByMzMZMKECYwZM4ZRo0axa9cu7rnnHr766ivGjBnDggULTor94YcfZvDgwZx99tnMmTOH3/3udzXXnj9/Punp6fzpT3/irbfeYuLEiYwdO5YLL7yQ3NxcAI4cOcL06dMZPnw4c+fOpfbqhQkJCTU/P/roo5x55pmMGjWKBx54AIC9e/cydOhQbrrpJoYPH8706dMpLy/n1VdfJSMjg2uvvZYxY8ZQXl7epP8uxoSi3CJfH1p8VDi/fDOTY6WVzgakqm3mNX78eD3R9u3bT9p2Eq9XtWdPVV+DUuBXWpqvXCO9+uqrOnfu3JrPBQUFqqrap08fzc/PV1XV/Px8Peecc7SkpERVVR955BF96KGHtLKyUidPnqx5eXmqqvrSSy/pDTfcoKqq5513Xs15P/roIx0+fLiqqt5777363HPPqarqsWPHdODAgVpSUqK33XabPv/886qqWlFRoWVlZbpnz56a4060du1aHT16tJaXl2tRUZGeccYZ+uijj9Zc+8c//nFN2aNHj6rXf2+efvppvfPOO1VV9fbbb9eHHnpIVVXffvttBWq+c3x8vKqqvvvuu3rTTTep1+tVj8ejs2fP1o8++kj37Nmj4eHhunHjRlVVveqqq2q+13nnnafr1q0LGHeD/nsbE6KWbcnRPne/ra+t368D7l2mP3tpY9CvCWRoHb9T29RcTE32+edQWFh/mYICWLsWJk6sv9wJRo4cyV133cXdd9/NJZdcwjnnnHNSmTVr1rB9+3amTJkCQGVlJZMnT2bnzp1s27aNiy66CACPx0P37t1rjpszZw4A5557LkVFRRQUFLBixQqWLl1a89e+y+Vi3759TJ48md/85jdkZ2dzxRVXMHDgwHrj/vTTT7n88suJiYkhJiaGSy+99Lj911xzTc3P2dnZXHPNNRw8eJDKysqaYaarVq3i9dd9XU+zZ88mOTn5pOusWLGCFStWMHasr4uppKSEXbt20bt3b/r168eYMb5HYcaPH8/evXvrjdmY1q66BjF1cBd+Mu0MHv/vLi4d3YNpQ7o4Eo8lCICDByHsFK1tYWHQhHbvQYMGsWHDBpYvX87999/PBRdcwP/8z/8cV0ZVueiii1iyZMlx27du3crw4cNZvXp1wHOfOGpHRFBVXnvtNQYPHnzcvqFDhzJx4kSWLVvGrFmzeOqpp+jfv3+jv0+1+Pj4mp9vv/127rzzTi677DJWrlzJgw8+2ODzqCr33nsvN99883Hb9+7dS3R0dM3n8PBwa04ybV5uUQWR4UJyXCS3TTuD/2w7yH1vbOXd+efQYfMG3++q7t19f6i2wKg9m4sJfDfc662/jNcLPXo0+tQ5OTnExcXx/e9/nwULFrBhwwYAEhMTKS4uBmDSpEl8+umn7N69G/D1I3z55ZcMHjyY/Pz8mgRRVVVFZmZmzblffvllAD755BOSkpJISkpixowZ/PnPf65p79+4cSMAWVlZ9O/fnzvuuIPLL7+cLVu2HBfDiaZMmcJbb72Fy+WipKSEt99+u87vWFhYSM+evsdXnnnmmZrt5557Li+++CIA77zzDseOHTvp2BkzZrBo0aKaPpcDBw6Ql5dX7z2tL25jWrO8IhddEmMQEaIiwvi/74xm6MaP8fZqmcEzJ7IaBPiycVKSr1O6Lh07woQJjT711q1bWbBgAWFhYURGRvLEE08AMG/ePGbOnEmPHj348MMPWbx4MXPmzKGiogKAX//61wwaNIhXX32VO+64g8LCQtxuN/Pnz2f48OGAb2qJsWPHUlVVxaJFiwD45S9/yfz58xk1ahRer5d+/frx9ttv88orr/Dcc88RGRlJt27duO++++jUqRNTpkxhxIgRXHzxxTz66KM1cZ955plcdtlljBo1iq5duzJy5EiSkpICfscHH3yQq666iuTkZM4//3z27NkDwAMPPMCcOXMYPnw4Z511Fr179z7p2OnTp7Njxw4mT54M+Dqvn3/+ecLDw+u8p9dffz233HILsbGxrF69mtjY2Mb+ZzEmJOUVV9Clwzc15zFbP+OpN/8fkZUnPABaUuIbPPPqqzBrVvACqqtzojW+mtxJraq6bJlqbGzgDurYWN/+EFJfR21zKS4uVlXV0tJSHT9+vK5fvz6o12sO1kltWrMLf79Sb342w/chiINnaqOeTmprYqo2a5YvG6elQUICdOjge09LC36WDlHz5s1jzJgxjBs3jiuvvJJx48ad+iBjTJPlFrm+qUE0ZvBMkFgTU22zZsG+fb4bnpPj63OYMKFFOoMaa+XKlUG/RnX/gTEm+FxVHopcbrp2iPFtCOLgmYayBHEikUYPZTXGmNOVV+Trf+yS6K9BBHHwTEO1iyYm1eDMp2RCi/13Nq1ZbrGvI7qmBlE9eKY+TRw801BtPkHExMRw5MgR++XRxqn61oOIiYlxOhRjmqT6IbmaPggRWLgQ6hilVxEVjfeJJ4PaBN7mm5jS0tLIzs4m0FoRpm2pXlHOmNYo19/E1DWx1h851YNnbr7Z1yEdFgZeLyWxCdx23s1MSBhcM4FdMLT5BBEZGWkrjBljQl5esYuo8DA6xp2wZG6AwTPxZ55Jwkub+N27OxnVsyNnD0wJSkxtPkEYY0xrkFfke0gu4MJXJwyeEeD/XTmKnYeKueOljbx9+9n06Nj8D4y2+T4IY4xpDXKLXN+MYGqA+OgInvzBeCrdXn78wgYq3M2/Cp0lCGOMCQG5Ra5vRjA10IDUBH531WjG9uqI0Pyd1dbEZIwxISCvuIJzBqY2+riZI7oxc0S3IERkNQhjjHFcWaWbYpf7uIn6QkEw16TuJSIfish2EckUkZ8GKCMi8riI7BaRLSIyrta+60Rkl/91XbDiNMYYp33zFHVoPccTzCYmN3CXqm4QkURgvYi8p8evLX0xMND/mgg8AUwUkU7AA0A6oP5jl6rqyQsKGGNMK5dX7H8Gor3UIFT1oKpu8P9cDOwAep5Q7HLgWf+ss2uAjiLSHZgBvKeqR/1J4T1gZrBiNcYYJ1U/Rd3YTupga5E+CBHpC4wFPj9hV09gf63P2f5tdW03xpg2p2aajUYMc20JQU8QIpIAvAbMV9WiIJx/nohkiEiGTadhjGmN8ooriIoIIyk28tSFW1BQE4SIROJLDi+o6usBihwAetX6nObfVtf2k6jqQlVNV9X01NTGDxEzxhin5RW56FrXU9QOCuYoJgH+AexQ1T/UUWwp8EP/aKZJQKGqHgTeBaaLSLKIJAPT/duMMabNyS2qOH6SvhARzFFMU4AfAFtFZJN/231AbwBVfRJYDswCdgNlwA3+fUdF5GFgnf+4X6nq0SDGaowxjsktdjGkW6LTYZwkaAlCVT+B+p/99i+YfWsd+xYBi4IQmjHGhJS8ogrObcJT1MFmT1IbY4yDSivclFS4Q26IK1iCMMYYR4XqQ3JgCcIYYxz1zTMQVoMwxhhTyzdPUVsNwhhjTC35/iamLtYHYYwxprbcIhcxkWF0iAm95XksQRhjjINyiyrokhgTck9RgyUIY4xxVK5/mo1QZAnCGGMclF9cEZL9D2AJwhhjHJVb5ArJeZjAEoQxxjimpMJNaaUn5NairmYJwhhjHBLKz0CAJQhjjHFMXpF/mg1rYjLGGFNbXrF/mg3rpDbGGFNbzTxM1sRkjDGmttyiCmIjw0mMDr2nqMEShDHGOCavuCIk16KuZgnCGGMcklvkCtn+BwhighCRRSKSJyLb6tifLCJviMgWEVkrIiNq7dsrIltFZJOIZAQrRmOMcVJekYsuiaHZ/wDBrUEsBmbWs/8+YJOqjgJ+CPzphP3TVHWMqqYHKT5jjHGMqpJbVBGSS41WC1qCUNVVwNF6igwDPvCX/QLoKyJdgxWPMcaEkpIKN+VVnpB9SA6c7YPYDFwBICITgD5Amn+fAitEZL2IzKvvJCIyT0QyRCQjPz8/qAEbY0xzya1+SK491iAa4BGgo4hsAm4HNgIe/76zVXUccDFwq4icW9dJVHWhqqaranpqamrQgzbGmOaQ538GIjWE+yAcG3yrqkXADQDiG+O1B8jy7zvgf88TkTeACcAqh0I1xphml1tcPQ+T1SBOIiIdRSTK/3EusEpVi0QkXkQS/WXigelAwJFQxhjTWuW1giamoNUgRGQJMBVIEZFs4AEgEkBVnwSGAs+IiAKZwI/8h3YF3vA/OBIBvKiq/wlWnMYY44Tcogrio8JJCNGnqCGICUJV55xi/2pgUIDtWcDoYMVljDGhILc4tB+SA3uS2hhjHBHqD8mBJQhjjDlt/7t8B9/+26dUebwNPsY3D5PVIIwxps2qdHt5ae0+Nu4rYNEnexp0jO8paqtBGGNMm/bJ7nyKXG56dozlsfd3kX2s7JTHFLncuKq8VoMwxpi27O0tB0mMieCFuRMBeHBpJqpa7zGhvlBQNUsQxhjTRBVuD+9l5jJjeDf6psTzs4sG8v6OPFZsz63zGFeVh1/+exvhYcLwHh1aMNrGswRhjDFN9PGXhymucHPJqO4A3DClH0O6JfLg0kxKK9wnla90e7nl+fWs3XuUP1w9mjO6JLZ0yI1iCcIYY5po2daDJMVGMuWMFAAiw8P4zbdHcrDQxR/f+/K4sm6Pl/kvb2Tlznz+99sjuXxMTydCbhRLEMYY0wSuKg/vbc9l5vBuRIZ/86t0fJ9k5kzozT8/20tmTiEAXq9yz+tbWb71EPfPHsqcCb2dCrtRLEEYY0wTfPRlPiUVbmb7m5dqu3vmYDrGRvKLN7bh8Sq/ens7r67PZv6FA5l7Tn8Hom0aSxDGGNMEy7YcJDkukskDOp+0r2NcFL+YPZRN+wu45qnVLP5sL3PP7sdPLxjoQKRNZwnCGGMayVXl4f0ducwccXzzUm3fHtuTyf07k/H1MeZM6MUvZg/FPwlpqxG60wgaY0yIWrkzj7JKD5eM6lFnGRHhT98dw4c78/jO+F6tLjmAJQhjjGm0t7ccpHN8FBP7daq3XJcOMVxzZuvokA7EmpiMMaYRyird/HdHHjNHdCOijualtqJtfztjjGlmH36RT3mVJ+DopbbGEoQxxjTCsq05pCREMbHfyaOX2pqgJQgRWSQieSIScD1pEUkWkTdEZIuIrBWREbX2zRSRnSKyW0TuCVaMxhjTGKUVbj74Io+LR3QnPKz1dTo3VjBrEIuBmfXsvw/YpKqjgB8CfwIQkXDgr8DFwDBgjogMC2KcxhjTIB98kYerylsz91JbF7QEoaqrgKP1FBkGfOAv+wXQV0S6AhOA3aqapaqVwEvA5cGK0xhjGmrZloN0SYwmvW/9o5faCif7IDYDVwCIyASgD5AG9AT21yqX7d9mjDGOWrPnCNMGd2kXzUvgbIJ4BOgoIpuA24GNgKexJxGReSKSISIZ+fn5zR2jMcYAcLS0koKyKgZ2TXA6lBbj2INyqloE3AAgvkcM9wBZQCzQq1bRNOBAPedZCCwESE9Pr38ZJ2OMaaKs/BIA+qfGOxxJy3GsBiEiHUUkyv9xLrDKnzTWAQNFpJ9//3eBpU7FaYwxAFmHSwHol2I1iNMmIkuAqUCKiGQDDwCRAKr6JDAUeEZEFMgEfuTf5xaR24B3gXBgkapmBitOY4xpiKz8UiLDhV7JsU6H0mKCliBUdc4p9q8GBtWxbzmwPBhxGWNMU2Tll9C7U1ybn16jtvbzTY0x5jRkHS6lf2r7aV4CSxDGGHNKbo+Xr4+UtqsOarAEYYwxp5R9rJwqjzKgHXVQgyUIY4w5pazD7W+IK1iCMMaYU8rK9w1xtT4IY4wxx/kqv5SOcZF0io86deE2xBKEMcacwp7DJfRPaV/NS2AJwhhjTikrv/0NcYUGJggRiReRMP/Pg0TkMhGJDG5oxhjjvGJXFXnFFe2ugxoaXoNYBcSISE9gBfADfAsCGWNMm7bHPwdT/3Y2xBUaniBEVcvwrd/wN1W9ChgevLCMMSY0fDOCyWoQdRERmQxcCyzzbwsPTkjGGBM6svJLCBPo0znO6VBaXEMTxHzgXuANVc0Ukf7Ah8ELyxhjQsNXh0tJS44jOqL9/U3coNlcVfUj4CMAf2f1YVW9I5iBGWNMKPCNYGp/zUvQ8FFML4pIBxGJB7YB20VkQXBDM8YYZ3m96n8Gov11UEPDm5iG+Vd7+xbwDtAP30gmY4xpsw4VuXBVea0GcQqR/ucevgUsVdUqwNZ/Nsa0ae15BBM0PEE8BewF4oFVItIHKApWUMYYEwqqZ3Ed0A6fooYGJghVfVxVe6rqLPX5GphW3zEiskhE8kRkWx37k0TkLRHZLCKZInJDrX0eEdnkfy1t1DcyxphmkpVfSnxUOF0So50OxREN7aROEpE/iEiG//V7fLWJ+iwGZtaz/1Zgu6qOBqYCvxeR6qkSy1V1jP91WUNiNMaY5vZVfgn9UxMQEadDcURDm5gWAcXA1f5XEfDP+g5Q1VXA0fqKAIniu/MJ/rLuBsZjjDFB156HuEIDn4MABqjqlbU+PyQim07z2n8BlgI5QCJwjap6/ftiRCQDX8J4RFX/XddJRGQeMA+gd+/epxmSMcb4uKo85BSW0z+ll9OhOKahNYhyETm7+oOITAHKT/PaM4BNQA9gDPAXEeng39dHVdOB7wGPiciAuk6iqgtVNV1V01NTU08zJGOM8dlzuBTV9juCCRpeg7gFeFZEkvyfjwHXnea1b8BXO1Bgt4jsAYYAa1X1AICqZonISmAs8NVpXs8YYxqsehbXfu1woaBqDR3FtNnfmTwKGKWqY4HzT/Pa+4ALAESkKzAYyBKRZBGJ9m9PAaYA20/zWsYY0yhZ+b4hrlaDaCD/09TV7gQeq6usiCzBNzopRUSygQeASP95ngQeBhaLyFZAgLtV9bCInAU8JSJefAnsEVW1BGGMaVFZ+aV0T4ohLqpRvybblNP55vWO+1LVOafYnwNMD7D9M2DkacRljDGn7avD7XsEE5zemtQ21YYxpk1SVbLy2+8kfdXqrUGISDGBE4EAsUGJyBhjHHa4pJJil7vd1yDqTRCqmthSgRhjTKj4poO6fdcgTqeJyRhj2qQs/xDX/u14iCtYgjDGmJNk5ZcQHRFGz47tuyXdEoQxxpxgz+FS+qXEExbWPifpq2YJwhhjTtDeJ+mrZgnCGGNqqfJ42Xe0rN0PcQVLEMYYc5yv8ktwe5UzuliCsARhjDG1bM/xzSg0vEeHU5Rs+yxBGGNMLZk5RcREhrX7ZyDAEoQxxhxne04RQ7p1ILydj2ACSxDGGFNDVcnMKWSYNS8BliCMMaZG9rFyilxu63/wswRhjDF+2w/6OqiHdbcEAZYgjDGmRmZOEWECQ7pZggBLEMYYU2N7TiH9UxOIjQp3OpSQENQEISKLRCRPRLbVsT9JRN4Skc0ikikiN9Tad52I7PK/rgtmnMYYA74RTNb/8I1g1yAWAzPr2X8rsF1VR+Nbv/r3IhIlIp3wrWE9EZgAPCAiyUGO1RjTjh0rrSSn0GUJopagJghVXQUcra8IkCgiAiT4y7qBGcB7qnpUVY8B71F/ojHGmNOSmVPdQZ3kcCShw+k+iL8AQ4EcYCvwU1X1Aj2B/bXKZfu3nURE5olIhohk5OfnBzteY0wbtf1gIYA9A1GL0wliBrAJ6AGMAf4iIo36r6OqC1U1XVXTU1NTgxGjMaYdyMwpontSDJ3io5wOJWQ4nSBuAF5Xn93AHmAIcADoVatcmn+bMcYEhXVQn8zpBLEPuABARLoCg4Es4F1guogk+zunp/u3GWNMsyuv9PBVfgnDelj/Q20RwTy5iCzBNzopRUSy8Y1MigRQ1SeBh4HFIrIVEOBuVT3sP/ZhYJ3/VL9S1fo6u40xpsm+OFSEV+0J6hMFNUGo6pxT7M/BVzsItG8RsCgYcRljTG3VU2xYE9PxnG5iMsYYx2XmFNEhJoK05FinQwkpliCMMe1eZk4Rw3p0wPdIlqlmCcIY0665PV6+OFhkD8gFYAnCGNOu7TlcSoXba/0PAViCMMa0azUd1D0tQZwoqKOY2iKPVyksr+JYWSWF5VUUllVRUF7pf6+ivNJDSkI03ZJi6J4UQ7ekGLp2iCEy3HKxMaEoM6eIqIgwBqQmOB1KyLEEASzdnENphdv/8lBa6aakwk1ZhZsil5ujpZUUlFVyrKyKIlcVqnWfKyo8jEqP97htItA5PprIcMGriip4FUDxKkSGC7GR4cREhhMbFU5cVDixkeGICJVuLxVuD5VuL5UeL5VuL26PEh4mhIcJEeFCeFgYEf7PMZHhxESEEes/R4z/lRwXSUpCNCmJ0aQkRJGaEE2n+CgiLHGZdi4zp5DBXRPtj7gALEEA97y2hbJKT83nmMgwEqIjiIuKoENsBMlxUfTqFEdyXCQd46JIjoskOS6KpLhIOsb6tiXFRtIhJoLwMKHI5eZQoYuDheX+dxd5xS48XkUQwsJARBB8ycPtUcoqPZRXeXBVeSir9HCstAqvKtERYURFhBEXFUHHiDCiwsOI8Ccat0fxeBW31/de5fFSWF5FXpXvXOW1zlnlOTmriUD/lHjOGpDCWQM6M6l/Z5JtHhrTjqgq23OKmD6sm9OhhCRLEMCyO84hNjKcuOhw4qN8v+RPR1JsJEmxkQzulthMEZ4eVaWkws3hkkoOl1RwuLiCwyUV5BdXsOVAIa9tyOa5NV8jAkO7deCsAZ0ZmZZEh5hIEmIiSIyJICE6gsSYSBKiT//+GBMqDha6OFZWZf0PdbAEAfRLiXc6hKASERJjIkmMiQz4Xas8XrZkF7D6qyN89tURnl3zNZVub4AzQYeYCBbMHMK1E3oTZonCtHLVa0DYCKbALEEYIsPDGN+nE+P7dOK28wfiqvKQfaycYlcVJRVuil1uil1VFLvcfPBFHr/89zbe3HiA314xkoFdQ6OWZExTbM8pQgSGdLMEEYglCHOSmMhwzugSeETHj87ux6vrs/nN8h3MevxjfjL1DH4ybQDREbbIuwldqhrwKenMnEL6dY4nPtp+FQZid8U0iohwVXovpg3pwq/e2s6f/ruLZVsP8vDlI0hLjqXAP+y3oKyKgrJKilxuxvbqyOQBnW0aA9PijpRUcPdrW/l4Vz7nDEzlklHduWBoFxJjIgFfE9OY3h0djjJ0WYIwTZKSEM3jc8by7XE9uf+Nbcx5ek295fulxPO9Cb25cnyardhlWsTHu/K585XNFJZXccnI7qzOOsL7O3KJigjjvEGpXDCkCwcKyrl2Um+nQw1ZovUN6m9l0tPTNSMjw+kw2p3SCjdvbc4hPEzoGBdFx7hIkuMiSYqNIiYyjPd35PLCmn1kfH2MqPAwZo3sxvcm9uHMvslWqzDNrtLt5XcrdrJwVRYDuyTw+JyxDO3eAa9X2bj/GG9vOcg7Ww9xqMgFwOIbzmTq4C4OR+0cEVmvqukB91mCMC1l56FiXvz8a17feIBil5uRPZO4e+YQzh6Y4nRopo3Iyi/hjpc2su1AEd+f1JtfzBpGbNTJ/WNer7Jh3zEyc4q4dmLvdv3AqCUIE1LKKt0s3ZTDnz/YzYGCcs4+I4W7Zw5hZJrNpmma7q3NOdz92haiIsL4vytHMX24PfzWEI4kCBFZBFwC5KnqiAD7FwDX+j9GAEOBVFU9KiJ7gWLAA7jrCv5EliBalwq3h+fX7OMvH+ziWFkVl4zqzs+nD6ZvG38uxTS/ZVsOcvuSDaT36cTjc8bSLSnG6ZBaDacSxLlACfBsoARxQtlLgZ+p6vn+z3uB9MYwmgMAABMmSURBVOr1qRvKEkTrVOSq4ulVWfz94z1Uebz8cHJf7r54sA2dNQ3ywRe5zHt2PeN6J/PMjRMCNimZutWXIILW8Kaqq4CjDSw+B1gSrFhMaOsQE8ld0wfz0YKpXJXei0Wf7uHapz/ncEmF06GZEPfZ7sPc8vwGhvXowD+uT7fk0Mwc75kRkThgJvBarc0KrBCR9SIyz5nITEvr0iGG314xkj/PGcu2nEIu+/MnZOYUOh2WCVHrvz7G3Gcz6Nc5nmdumFDzbINpPo4nCOBS4FNVrV3bOFtVxwEXA7f6m6sCEpF5IpIhIhn5+fnBjtW0gEtH9+BfN5+FAlc+8RnLthx0OiQTYrYdKOT6f66lS2I0z82dYLMQB0koJIjvckLzkqoe8L/nAW8AE+o6WFUXqmq6qqanpqYGNVDTckamJfHmbVMY1r0Dt764gT+s2InX23ZG3Jmm251XzA8XrSUxOoLn506kS6J1SAeLowlCRJKA84A3a22LF5HE6p+B6cA2ZyI0TuqSGMOSeZO4anwaj3+wm1ueX0+F23PqA02b5fUqP3omgzARXrhpEmnJcU6H1KYFLUGIyBJgNTBYRLJF5EcicouI3FKr2LeBFapaWmtbV+ATEdkMrAWWqep/ghWnCW3REeH833dGcf/soazYnsv9b2yjLT27YxpnU3YBXx8p475ZQ9r8NP2hIGhzManqnAaUWQwsPmFbFjA6OFGZ1khEmHtOf4pcbh7/7y4Gd0tk7jn9nQ7LOODdbYeIDBcuGNrV6VDahVDogzCmQeZfMJCLR3Tjf5fv4MMv8pwOx7QwVeWdbYc4a0AKSbE2YqklWIIwrUZYmPD7q0czpFsH7liykV25xU6HZFrQjoPF7DtaxswRNoVGS7EEYVqVuKgInr4unejIcOY+m8Gx0kqnQzIt5D+ZhwgTuGiYNS+1FEsQptXp2TGWp34wnoMFLn78wnqqPIHXzzZty7vbDnFm306kJEQ7HUq7YQsGmVZpfJ9kHrlyJHe+spn/eTOT70/qTfaxcvYfLSP7WDnZx8o4UODiB5P68L2JtiBMa5eVX8LO3GIeuHSY06G0K5YgTKt1xbg0vswt4cmPvmLJ2n012+OjwunVKY5Kt5cHl2YytndHhna3Relbs/9kHgJghk3h3aIsQZhWbcGMwYzs6VtHolenWHolx9ExLhIR4UhJBTMe+5ifvbyJf986hZhIm8ittXp32yFGpyXRo2Os06G0K9YHYVq18DBh9qjuzB7VnVFpHUmOj6pZxrRzQjSPfmcUXxwq5nfv7nQ4UtNUBwrK2ZxdyMwR3Z0Opd2xBGHatGlDuvCDSX34+yd7+HR3o5YXMSFiRU3zko1eammWIEybd9+sofRPjeeuVzZTWFbldDimkd7ZdojBXRPpn5rgdCjtjiUI0+bFRoXz2DVjOFxSwf1v2ryPrUl+cQXr9h61h+McYgnCtAuj0joy/8KBvLU5hzc3HXA6HNNA7+/IRRVLEA6xBGHajR9PPYP0Psnc/+9tHCgodzoc0wD/2XaIPp3jGNIt0elQ2iUb5mrajfAw4Y/XjGHmY6s49/8+JDYynJjIMKIjwomufo8IIyYyzL+v+hVGfFQE/VLjGdQ1kUFdEkmKs8nigq2wvIrPvjrMjVP61YxMMy3LEoRpV3p1iuPZH03k/R25VFR5cbk9VFR5qXB7cNW8ezhcUomryoPLv73YVYWr6pspPbp2iGZQ10SG+Kce79rBVjVrbh98kUuVR615yUGWIEy7M75PMuP7JDfqGK9XOVBQzq68Yr7MLeHL3GJ25ZbwzGdf8/Guw/zrlskkxrSfWsWGfcdIS44N6nKf/9l2iG4dYhid1jFo1zD1swRhTAOEhQm9OsXRq1Mc5w/5Zjz+x7vyuf6f67hjyUae/mE6EeFtv1svp6Cc7zzxGZ0Toll03ZmMTEtq9msUuar46Mt8rknvRViYNS85pe3/azYmiM4ZmMpDlw3nw535/HrZDqfDaRGvZOzHqxARJlz91Gre257b7Nd44M1MqjzKVem9mv3cpuGCuSb1IhHJE5GAA89FZIGIbPK/tomIR0Q6+ffNFJGdIrJbRO4JVozGNIfvT+rDjVP6sfizvTy3eq/T4QSVx6u8vG4/5wxMYeltZzOoawLznstg0Sd7mu0ab246wBsbD3DH+QMZ0bP5ayem4YJZg1gMzKxrp6o+qqpjVHUMcC/wkaoeFZFw4K/AxcAwYI6I2By/JqT9YvZQLhjShQff2s5HX+Y7HU7QfPRlHgcLXXxvQm9SE6N5ad5kpg/ryq/e3s4Db27DfZprc+w/Wsb9b2xjfJ9kbp02oJmiNk0VtAShqquAow0sPgdY4v95ArBbVbNUtRJ4Cbg8CCEa02zCw4Q/zRnLoK6J3PbCBr5so8uhvvj5flISornQv6pbbFQ4T1w7nnnn9ueZ1V8z77n1HC2tpMLtwevVRp3b41XufGUTCjx2zZh20Z8T6hzvpBaROHw1jdv8m3oC+2sVyQYm1nP8PGAeQO/etjCMcU5CdAT/uC6db/31U25cvI5/3zqlTa1+dqjQxQdf5HLzeQOIrPXLOyxMuG/WUHp3iuOBpZmMe/i9mn3hYUJEmBAZHubbf+kwJvbvHPD8T6zczbq9x/jD1aPp1Sku6N/HnJrjCQK4FPhUVRta2ziOqi4EFgKkp6c37k8WY5pZj46x/P26dK5+ajXzns3gxZsmtZl1KKo7p797ZuCO4+9P6sPQ7h1Y//VRqjxKlceL2/9e6fHy3vZcrlm4hjkTenHPxUNJiv1mWPCm/QU89v4uLh3dg2+P7dlSX8mcQigkiO/yTfMSwAGg9r/ANP82Y1qFUWkd+ePVY/jxCxu457Ut/PGaMa3+SeDqzumzz0ihT+f4OsvV94zJghmD+eN7X/KPT/bw/o48HrpsOBeP6EZZpYf5L22ka4cYfv2tEa3+XrUljjbyiUgScB7wZq3N64CBItJPRKLwJZClTsRnTFNdPLI7P58+iH9vyuFvK79yOhwACsuqKHI1bbrzVbvyOVBQzpwJTW/GjYuK4Bezh/HmrWfTJTGan7ywgZueXc89r2/l66Nl/P7q0cfVKozzglaDEJElwFQgRUSygQeASABVfdJf7NvAClUtrT5OVd0ichvwLhAOLFLVzGDFaUyw3DrtDHbnlfDouzvpnxLPxSNbZkW0/OIK1n99lKzDpezJL2XPYd/rSGklURFhXDkujZvO6deo9RWWfL6PzvFRXDTs9BftGZmWxJu3TuEfn+zhj+9/iavKy0+mDmBSHX0Txjmi2naa7dPT0zUjI8PpMIyp4ary8L2n17D9YBH/uvmsoDx1XNvuvBKuevIzjvkXRuqSGE2/lHj6p8bTLyWevUfKeHV9NlUeLxcN7crN5/VnfJ9O9Z4zr8jF5Ec+YO45/bj34qHNGu++I2V8uDOPORN6ExVho5acICLrVTU94D5LEMYEV35xBd/666e4vV6W3nZ20Cb2O+CfAqPKo/zt2nEM69GBhOiTGwkOl1Tw7Gd7eXbN1xSUVTG+TzK3nDeAC4d2Cdj+/9cPd/Pouzv58OdT6ZdSd/+DaZ3qSxCWso0JstTEaP5+XTolLjdzn8mgvNLT7Nc4UlLBD/7xOSUVbp69cQIT+nUKmBwAUhKiuXP6YD6753wevHQYuUUubno2g6ueXM2m/QXHlfV6lSVr93HWgM6WHNohSxDGtICh3Tvwp++OZVtOIbc8v54jJRXNdu5iVxXX/3MdOQXlLLr+TIb16NCg4+KiIrh+Sj9W/nwqv71iJHuPlPKtv37K/Jc21iyo9Mnuw2QfO73OadN6WROTMS3oxc/38cDSbXSIieRXl49g9qjT67h2VXm44Z/rWLf3KE//MJ1pQ7o0+VwlFW6eWLmbpz/egwBzz+nHjoPFbNpfwOp7zyc6om08z2GOZ01MxoSI703szdu3n0PP5FhufXEDP3lhPYebWJtwe7zcvmQjq7OO8PurR59WcgDfk+ALZgzhg7vOY+aIbvz1w6/44Is8vjM+zZJDO2U1CGMc4PZ4WfhxFo+9t4uEmAgeumw4l4zq3uCHxArKKnlwaSb/3pTDQ5cN57qz+jZ7jJv2F/Dyuv387MKBdLEV89osG8VkTIjalVvMz1/dwub9BVwwpAvXnNmLcwel1jk9x4GCcv7+cRYvr9tPWaWHuy4axO0XDGzhqE1bUl+CCIWpNoxptwZ2TeS1Wybz90/28MTKr/jvF3nER4UzbUgXZo3sztTBqcRFRbDjYBELV2WxdHMOAlw2pgc3nzuAwd0Snf4Kpg2zGoQxIaLK42VN1hGWbz3EisxDHCmtJCYyjEFdE9mSXUhcVDhzJvTmR2f3o0fHWKfDNW2ENTEZ08p4vMraPUd5Z9tBNu4rYMbwrvxgUl+S4myuItO8rInJmFYmPEyYPKAzkwfY/ETGOTbM1RhjTECWIIwxxgRkCcIYY0xAliCMMcYEZAnCGGNMQJYgjDHGBGQJwhhjTECWIIwxxgTUpp6kFpF84OsGFE0CCk+zXF37Am0/cVt9n1OAww2IrbEa+p2bcozdp/Z3n+qKrTmOsfvUsvdpoKoGXixdVdvdC1h4uuXq2hdo+4nb6vsMZDj5ne0+2X1y+l7ZfXL2PtV+tdcmpreaoVxd+wJtP3HbqT4HQ1OuYfepeY9pS/epqddpyDF2n5y9TzXaVBNTWyAiGVrHxFnmG3afGsbuU8PYfQqsvdYgQtlCpwNoJew+NYzdp4ax+xSA1SCMMcYEZDUIY4wxAVmCMMYYE5AlCGOMMQFZgmhFRGSqiHwsIk+KyFSn4wllIhIvIhkiconTsYQqERnq/7f0qoj82Ol4QpWIfEtEnhaRl0VkutPxtCRLEC1ERBaJSJ6IbDth+0wR2Skiu0XknlOcRoESIAbIDlasTmqm+wRwN/BKcKJ0XnPcJ1Xdoaq3AFcDU4IZr1Oa6T79W1VvAm4BrglmvKHGRjG1EBE5F98v92dVdYR/WzjwJXARvl/464A5QDjw2xNOcSNwWFW9ItIV+IOqXttS8beUZrpPo4HO+BLpYVV9u2WibznNcZ9UNU9ELgN+DDynqi+2VPwtpbnuk/+43wMvqOqGFgrfcRFOB9BeqOoqEel7wuYJwG5VzQIQkZeAy1X1t0B9TSPHgOhgxOm05rhP/ua3eGAYUC4iy1XVG8y4W1pz/XtS1aXAUhFZBrS5BNFM/54EeAR4pz0lB7AE4bSewP5an7OBiXUVFpErgBlAR+AvwQ0tpDTqPqnqLwBE5Hr8ta6gRhc6GvvvaSpwBb4/NpYHNbLQ0qj7BNwOXAgkicgZqvpkMIMLJZYgWhFVfR143ek4WgtVXex0DKFMVVcCKx0OI+Sp6uPA407H4QTrpHbWAaBXrc9p/m3meHafGsbuU8PYfWogSxDOWgcMFJF+IhIFfBdY6nBMocjuU8PYfWoYu08NZAmihYjIEmA1MFhEskXkR6rqBm4D3gV2AK+oaqaTcTrN7lPD2H1qGLtPp8eGuRpjjAnIahDGGGMCsgRhjDEmIEsQxhhjArIEYYwxJiBLEMYYYwKyBGGMMSYgSxCmzRORkha+3mctfL2OIvKTlrymaR8sQRjTSCJS7xxmqnpWC1+zI2AJwjQ7SxCmXRKRASLyHxFZ71+lb4h/+6Ui8rmIbBSR9/1rbyAiD4rIcyLyKfCc//MiEVkpIlkicketc5f436f6978qIl+IyAv+qaMRkVn+betF5HEROWnNChG5XkSWisgHwH9FJEFE/isiG0Rkq4hc7i/6CDBARDaJyKP+YxeIyDoR2SIiDwXzXpq2y2ZzNe3VQuAWVd0lIhOBvwHnA58Ak1RVRWQu8P8Bd/mPGQacrarlIvIgMASYBiQCO0XkCVWtOuE6Y4HhQA7wKTBFRDKAp4BzVXWPfzqIuowDRqnqUX8t4tuqWiQiKcAaEVkK3AOMUNUxAOJbFnMgvnUPBN96D+eq6qom3y3TLlmCMO2OiCQAZwH/8v9BD98swJQGvCwi3YEoYE+tQ5eqanmtz8tUtQKoEJE8oCsnLwW7VlWz/dfdBPTFt8JZlqpWn3sJMK+OcN9T1aPVoQP/618lzYtvXYOuAY6Z7n9t9H9OwJcwLEGYRrEEYdqjMKCg+i/uE/wZ33KuS/0L6jxYa1/pCWUrav3sIfD/Tw0pU5/a17wWSAXGq2qViOzFt6zqiQT4rao+1chrGXMc64Mw7Y6qFgF7ROQq8C0pKSKj/buT+GZtgOuCFMJOoH+tpTCvaeBxSUCePzlMA/r4txfja+aq9i5wo7+mhIj0FJEupx21aXesBmHagzgRqd308wd8f40/ISL3A5HAS8BmfDWGf4nIMeADoF9zB+Pvw/gJ8B8RKcW3PkFDvAC8JSJbgQzgC//5jojIpyKyDd+6yQtEZCiw2t+EVgJ8H8hr7u9i2jab7tsYB4hIgqqW+Ec1/RXYpap/dDouY2qzJiZjnHGTv9M6E1/TkfUXmJBjNQhjjDEBWQ3CGGNMQJYgjDHGBGQJwhhjTECWIIwxxgRkCcIYY0xAliCMMcYE9P8D31/gAF4NtVIAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "lr=0.1 ## uper bound LR\n",
    "from torch_lr_finder import LRFinder\n",
    "hparams_tmp = Namespace(\n",
    "    train_path=train_path,\n",
    "    val_path=val_path,\n",
    "    test_path=test_path,\n",
    "    batch_size=16,\n",
    "    warmup_steps=100,\n",
    "    epochs=1,\n",
    "    lr=lr,\n",
    "    accumulate_grad_batches=1,\n",
    ")\n",
    "module = TrainingModule(hparams_tmp)\n",
    "criterion = nn.CrossEntropyLoss()\n",
    "optimizer = AdamW(module.parameters(), lr=5e-7) ## lower bound LR\n",
    "lr_finder = LRFinder(module, optimizer, criterion, device=\"cuda\")\n",
    "lr_finder.range_test(module.train_dataloader(), end_lr=100, num_iter=100, accumulation_steps=hparams_tmp.accumulate_grad_batches)\n",
    "lr_finder.plot()\n",
    "lr_finder.reset()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "YdqP56M1oXav",
    "outputId": "f6c0b138-6248-4543-b987-6d7430c015f1"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.0001"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "lr = 1e-4 \n",
    "lr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 352
    },
    "id": "vMab6vu0Bow0",
    "outputId": "d3da4b83-d2ea-4f28-988a-61e796ae210b"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "LR suggestion: steepest gradient\n",
      "Suggested LR: 3.65E-02\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXhU5dn48e892TdCIGENS0D2LUhkERBwAdSqVetCrXUp4q5Uy6u29lW7vPVXW7cuLm0prqh1RUFFq4gKCmERCItgQAyBJGzZJ9vcvz9mEgNMQhIyOZPk/lzXXJM55znn3HPE3HnOs4mqYowxxhzN5XQAxhhjgpMlCGOMMX5ZgjDGGOOXJQhjjDF+WYIwxhjjlyUIY4wxfoU6HUBzSkxM1L59+zodhgm0bdu874MGORuHMW3AmjVr9qtqkr99bSpB9O3bl/T0dKfDMIE2dar3fdkyJ6Mwpk0QkW/r2mePmIwxxvhlCcIYY4xfAUsQItJLRD4Wkc0ikiEit/spIyLyuIjsEJENInJyrX1VIrLe91oUqDiNMcb4F8g2iErgTlVdKyJxwBoR+UBVN9cqczYwwPcaBzzhewcoVdXUEw2ioqKCrKws3G73iZ7KBIv77vO+b9lyxObIyEiSk5MJCwtzIChj2p6AJQhV3Qvs9f1cKCJbgJ5A7QRxAfCsemcM/EJEOopId9+xzSIrK4u4uDj69u2LiDTXaY2TXL6Kb61eTKrKgQMHyMrKIiUlxaHAjGlbWqQNQkT6AqOBL4/a1RP4rtbnLN82gEgRSReRL0Tkh/Wce46vXHpeXt4x+91uN507d7bk0MaJCJ07d7aaojHNKOAJQkRigdeAuapa0IhD+6hqGvBj4FER6e+vkKo+rappqpqWlOS3K68lh3bC/jubtmDbvkLcFVVOhwEEOEGISBje5PCCqr7up8geoFetz8m+bahq9XsmsAxvDSTwVOGLL+CNN7zvAVov49FHH6WkpCQg526ow4cP8/e//73Frte3b1/2798PwKmnntrk8yx4/XWyc3KaKyxjgoa7oorz/voZd7yy3ulQgMD2YhLgX8AWVX24jmKLgJ/6ejONB/JVda+IJIhIhO88icBEjmy7CIwlS6B3bzjrLLj6au97797e7c2srSSIysrKJh23YsWKJl9zwRtvkJ2b2+TjjQlWeYVllFd6WLJxH+9ubLam2CYLZA1iInAlcHqt7qrniMgNInKDr8wSIBPYAfwDuMm3fQiQLiJfAR8DDx7V+6n5LVkCP/oRZGVBUREUFHjfs7K825uYJIqLizn33HMZNWoUw4cP5+WXX+bxxx8nOzubadOmMW3aNACWLl3KhAkTOPnkk7nkkksoKioCYM2aNUyZMoUxY8YwY8YM9u71/qOZOnUqt99+O6mpqQwfPpxVq1bVXO/aa69l7NixjB49mrfeeguAjIwMxo4dS2pqKiNHjmT79u3cfffdfPPNN6SmpjJv3rxjYv/tb3/LoEGDmDRpErNmzeJPf/pTzbXnzp1LWloajz32GG+//Tbjxo1j9OjRnHnmmeT4/ro/cOAA06dPZ9iwYcyePZvaqxfGxsbW/PzQQw9xyimnMHLkSO7z9VDatWsXQ4YM4brrrmPYsGFMnz6d0tJSXn31VdIzMrhi3jxSU1MpLS1t0n8XY4JRToG3DS0mPIRfv5XBoeJyZwNS1TbzGjNmjB5t8+bNx2w7hsej2rOnqveBkv9XcrK3XCO9+uqrOnv27JrPhw8fVlXVPn36aF5enqqq5uXl6eTJk7WoqEhVVR988EF94IEHtLy8XCdMmKC5ubmqqvrSSy/pNddco6qqU6ZMqTnvJ598osOGDVNV1XvuuUefe+45VVU9dOiQDhgwQIuKivSWW27R559/XlVVy8rKtKSkRHfu3Flz3NFWrVqlo0aN0tLSUi0oKNCTTjpJH3rooZpr33jjjTVlDx48qB7fvfnHP/6hd9xxh6qq3nrrrfrAAw+oquo777yjQM13jomJUVXV999/X6+77jr1eDxaVVWl5557rn7yySe6c+dODQkJ0XXr1qmq6iWXXFLzvaaccoqu/s9//MbdoP/exgSpxRuytc9d7+hra77T/vcs1p+/tC7g1wTStY7fqW1qLqYm+/JLyM+vv8zhw7BqFYwbV3+5o4wYMYI777yTu+66ix/84AdMnjz5mDJffPEFmzdvZuLEiQCUl5czYcIEtm3bxqZNmzjrrLMAqKqqonv37jXHzZo1C4DTTjuNgoICDh8+zNKlS1m0aFHNX/tut5vdu3czYcIEfv/735OVlcVFF13EgAED6o37888/54ILLiAyMpLIyEjOO++8I/ZfdtllNT9nZWVx2WWXsXfvXsrLy2u6mS5fvpzXX/c2PZ177rkkJCQcc52lS5eydOlSRo/2NjEVFRWxfft2evfuTUpKCqmp3qEwY8aMYdeuXfXGbExrV12DmDqoCzdNO4nH/7ud80b1YNrgLo7EYwkCYO/e7/vW18XlguzsRp964MCBrF27liVLlnDvvfdyxhln8L//+79HlFFVzjrrLBYuXHjE9o0bNzJs2DBWrlzp99xH99oREVSV1157jUFHzXQ6ZMgQxo0bx+LFiznnnHN46qmn6NevX6O/T7WYmJian2+99VbuuOMOzj//fJYtW8b999/f4POoKvfccw/XX3/9Edt37dpFREREzeeQkBB7nGTavJyCMsJChIToMG6ZdhLvbdrLL9/YyPtzJ9Phq7Xe31Xdu3v/UG2BXns2FxN4b7jHU38Zjwd69Gj0qbOzs4mOjuYnP/kJ8+bNY+3atQDExcVRWFgIwPjx4/n888/ZsWMH4G1H+Prrrxk0aBB5eXk1CaKiooKMjIyac7/88ssAfPbZZ8THxxMfH8+MGTP4y1/+UvO8f926dQBkZmbSr18/brvtNi644AI2bNhwRAxHmzhxIm+//TZut5uioiLeeeedOr9jfn4+PXt6h68888wzNdtPO+00XnzxRQDeffddDh06dMyxM2bMYP78+TVtLnv27CH3OA3QcTExFBYX11vGmNYot8BNl7hIRITwUBd//NEohqz7FE+vluk8czSrQYA3G8fHexul69KxI4wd2+hTb9y4kXnz5uFyuQgLC+OJJ54AYM6cOcycOZMePXrw8ccfs2DBAmbNmkVZWRkAv/vd7xg4cCCvvvoqt912G/n5+VRWVjJ37lyGDRsGeKeWGD16NBUVFcyfPx+AX//618ydO5eRI0fi8XhISUnhnXfe4ZVXXuG5554jLCyMbt268ctf/pJOnToxceJEhg8fztlnn81DDz1UE/cpp5zC+eefz8iRI+natSsjRowgPj7e73e8//77ueSSS0hISOD0009n586dANx3333MmjWLYcOGceqpp9K7d+9jjp0+fTpbtmxhwoQJgLfx+vnnnyckJKTOe3r1hRdyw/33E/XII6xcuZKoqKjG/mcxJijlFpbRpcP3NefUjSt46q3/R1j5UQNAi4q8nWdefRXOOSdwAdXVONEaX01upFZVXbxYNSrKfwN1VJR3fxCZMmWKrl69OqDXKCwsVFXV4uJiHTNmjK5Zsyag12uwrVu9Lz+skdq0Zmf+eZle/2y690MAO8/URj2N1PaIqdo553izcXIyxMZChw7e9+TkwGfpIDVnzhxSU1M5+eSTufjiizn55JOPf5AxpslyCtzf1yAa03kmQOwRU23nnAO7d3tveHa2t81h7NgWaQxqrGUtsJpadfuBMSbw3BVVFLgr6doh0rshgJ1nGsoSxNFEGt2V1RhjTlRugbf9sUucrwYRwM4zDdUuHjGpBmY+JRNc7L+zac1yCr0N0TU1iOrOM/VpYueZhmrzCSIyMpIDBw7YL482TtW7HkRkZKTToRjTJNWD5GraIETg6aehjl56ZeEReJ54MqCPwNv8I6bk5GSysrLwt1aEaaX27fO+H1X9rl5RzpjWKMf3iKlrXK0/cqo7z1x/vbdB2uUCj4eiqFhumXI9Y2MH1UxgFwhtPkGEhYXZCmNtzY03et9boKHemJaSW+gmPMRFx+ijlsz103km5pRTiH1pPX96fxsje3Zk0oDEgMTU5hOEMca0BrkF3kFyfhe+OqrzjAD/7+KRbNtXyG0vreOdWyfRo2PzDxht820QxhjTGuQUuL/vwdQAMRGhPHnlGMorPdz4wlrKKpt/FTpLEMYYEwRyCtzf92BqoP5JsfzpklGM7tURofkbq+0RkzHGBIHcwjImD0hq9HEzh3dj5vBuAYjIahDGGOO4kvJKCt2VR0zUFwwCuSZ1LxH5WEQ2i0iGiNzup4yIyOMiskNENojIybX2XSUi232vqwIVpzHGOO37UdTBNY4nkI+YKoE7VXWtiMQBa0TkAz1ybemzgQG+1zjgCWCciHQC7gPSAPUdu0hVj11QwBhjWrncQt8YiPZSg1DVvaq61vdzIbAF6HlUsQuAZ32zzn4BdBSR7sAM4ANVPehLCh8AMwMVqzHGOKl6FHVjG6kDrUXaIESkLzAa+PKoXT2B72p9zvJtq2u7Mca0OTXTbDSim2tLCHiCEJFY4DVgrqoWBOD8c0QkXUTSbToNY0xrlFtYRnioi/iosOMXbkEBTRAiEoY3Obygqq/7KbIH6FXrc7JvW13bj6GqT6tqmqqmJSU1vouYMcY4LbfATde6RlE7KJC9mAT4F7BFVR+uo9gi4Ke+3kzjgXxV3Qu8D0wXkQQRSQCm+7YZY0ybk1NQduQkfUEikL2YJgJXAhtFZL1v2y+B3gCq+iSwBDgH2AGUANf49h0Ukd8Cq33H/UZVDwYwVmOMcUxOoZvB3eKcDuMYAUsQqvoZ1D/227dg9s117JsPzA9AaMYYE1RyC8o4rQmjqAPNRlIbY4yDissqKSqrDLourmAJwhhjHBWsg+TAEoQxxjjq+zEQVoMwxhhTy/ejqK0GYYwxppY83yOmLtYGYYwxpracAjeRYS46RAbf8jyWIIwxxkE5BWV0iYsMulHUYAnCGGMcleObZiMYWYIwxhgH5RWWBWX7A1iCMMYYR+UUuINyHiawBGGMMY4pKqukuLwq6NairmYJwhhjHBLMYyDAEoQxxjgmt8A3zYY9YjLGGFNbbqFvmg1rpDbGGFNbzTxM9ojJGGNMbTkFZUSFhRAXEXyjqMEShDHGOCa3sCwo16KuZgnCGGMcklPgDtr2BwhgghCR+SKSKyKb6tifICJviMgGEVklIsNr7dslIhtFZL2IpAcqRmOMcVJugZsuccHZ/gCBrUEsAGbWs/+XwHpVHQn8FHjsqP3TVDVVVdMCFJ8xxjhGVckpKAvKpUarBSxBqOpy4GA9RYYCH/nKbgX6ikjXQMVjjDHBpKisktKKqqAdJAfOtkF8BVwEICJjgT5Asm+fAktFZI2IzKnvJCIyR0TSRSQ9Ly8voAEbY0xzyakeJNceaxAN8CDQUUTWA7cC64Aq375JqnoycDZws4icVtdJVPVpVU1T1bSkpKSAB22MMc0h1zcGIimI2yAc63yrqgXANQDi7eO1E8j07dvje88VkTeAscByh0I1xphml1NYPQ+T1SCOISIdRSTc93E2sFxVC0QkRkTifGVigOmA355QxhjTWuW2gkdMAatBiMhCYCqQKCJZwH1AGICqPgkMAZ4REQUygJ/5Du0KvOEbOBIKvKiq7wUqTmOMcUJOQRkx4SHEBukoaghgglDVWcfZvxIY6Gd7JjAqUHEZY0wwyCkM7kFyYCOpjTHGEcE+SA4sQRhjzAn7vyVbuPDvn1NR5WnwMd55mKwGYYwxbVZ5pYeXVu1m3e7DzP9sZ4OO8Y6ithqEMca0aZ/tyKPAXUnPjlE8+uF2sg6VHPeYAncl7gqP1SCMMaYte2fDXuIiQ3lh9jgA7l+UgarWe0ywLxRUzRKEMcY0UVllFR9k5DBjWDf6Jsbw87MG8OGWXJZuzqnzGHdFFb9+cxMhLmFYjw4tGG3jWYIwxpgm+vTr/RSWVfKDkd0BuGZiCoO7xXH/ogyKyyqPKV9e6eGG59ewatdBHr50FCd1iWvpkBvFEoQxxjTR4o17iY8KY+JJiQCEhbj4/YUj2Jvv5pEPvj6ibGWVh7kvr2PZtjz+78IRXJDa04mQG8UShDHGNIG7oooPNucwc1g3wkK+/1U6pk8Cs8b25t8rdpGRnQ+Ax6Pc/fpGlmzcx73nDmHW2N5Ohd0oliCMMaYJPvk6j6KySs71PV6q7a6Zg+gYFcav3thElUf5zTubeXVNFnPPHMDsyf0ciLZpLEEYY0wTLN6wl4ToMCb073zMvo7R4fzq3CGs/+4wlz21kgUrdjF7Ugq3nzHAgUibzhKEMcY0kruiig+35DBz+JGPl2q7cHRPJvTrTPq3h5g1the/OncIvklIW43gnUbQGGOC1LJtuZSUV/GDkT3qLCMiPHZ5Kh9vy+VHY3q1uuQAliCMMabR3tmwl84x4YxL6VRvuS4dIrnslNbRIO2PPWIyxphGKCmv5L9bcpk5vBuhdTxeaiva9rczxphm9vHWPEorqvz2XmprLEEYY0wjLN6YTWJsOONSju291NYELEGIyHwRyRURv+tJi0iCiLwhIhtEZJWIDK+1b6aIbBORHSJyd6BiNMaYxiguq+SjrbmcPbw7Ia7W1+jcWIGsQSwAZtaz/5fAelUdCfwUeAxAREKAvwFnA0OBWSIyNIBxGmNMg3y0NRd3hadm7qW2LmAJQlWXAwfrKTIU+MhXdivQV0S6AmOBHaqaqarlwEvABYGK0xhjGmrxhr10iYsgrW/9vZfaCifbIL4CLgIQkbFAHyAZ6Al8V6tclm+bMcY46oudB5g2qEu7eLwEziaIB4GOIrIeuBVYB1Q19iQiMkdE0kUkPS8vr7ljNMYYAA4Wl3O4pIIBXWOdDqXFODZQTlULgGsAxDvEcCeQCUQBvWoVTQb21HOep4GnAdLS0upfxskYY5ooM68IgH5JMQ5H0nIcq0GISEcRCfd9nA0s9yWN1cAAEUnx7b8cWORUnMYYA5C5vxiAlESrQZwwEVkITAUSRSQLuA8IA1DVJ4EhwDMiokAG8DPfvkoRuQV4HwgB5qtqRqDiNMaYhsjMKyYsROiVEOV0KC0mYAlCVWcdZ/9KYGAd+5YASwIRlzHGNEVmXhG9O0W3+ek1ams/39QYY05A5v5i+iW1n8dLYAnCGGOOq7LKw7cHittVAzVYgjDGmOPKOlRKRZXSvx01UIMlCGOMOa7M/e2viytYgjDGmOPKzPN2cbU2CGOMMUf4Jq+YjtFhdIoJP37hNsQShDHGHMfO/UX0S2xfj5fAEoQxxhxXZl776+IKDUwQIhIjIi7fzwNF5HwRCQtsaMYY47xCdwW5hWXtroEaGl6DWA5EikhPYClwJd4FgYwxpk3b6ZuDqV876+IKDU8QoqoleNdv+LuqXgIMC1xYxhgTHL7vwWQ1iLqIiEwArgAW+7aFBCYkY4wJHpl5RbgE+nSOdjqUFtfQBDEXuAd4Q1UzRKQf8HHgwjLGmODwzf5ikhOiiQhtf38TN2g2V1X9BPgEwNdYvV9VbwtkYMYYEwy8PZja3+MlaHgvphdFpIOIxACbgM0iMi+woRljjLM8HvWNgWh/DdTQ8EdMQ32rvf0QeBdIwduTyRhj2qx9BW7cFR6rQRxHmG/cww+BRapaAdj6z8aYNq0992CChieIp4BdQAywXET6AAWBCsoYY4JB9Syu/dvhKGpoYIJQ1cdVtaeqnqNe3wLT6jtGROaLSK6IbKpjf7yIvC0iX4lIhohcU2tflYis970WNeobGWNMM8nMKyYmPIQucRFOh+KIhjZSx4vIwyKS7nv9GW9toj4LgJn17L8Z2Kyqo4CpwJ9FpHqqxFJVTfW9zm9IjMYY09y+ySuiX1IsIuJ0KI5o6COm+UAhcKnvVQD8u74DVHU5cLC+IkCceO98rK9sZQPjMcaYgGvPXVyhgeMggP6qenGtzw+IyPoTvPZfgUVANhAHXKaqHt++SBFJx5swHlTVN+s6iYjMAeYA9O7d+wRDMsYYL3dFFdn5pfRL7OV0KI5paA2iVEQmVX8QkYlA6QleewawHugBpAJ/FZEOvn19VDUN+DHwqIj0r+skqvq0qqapalpSUtIJhmSMMV479xej2n57MEHDaxA3AM+KSLzv8yHgqhO89jV4awcK7BCRncBgYJWq7gFQ1UwRWQaMBr45wesZY0yDVc/imtIOFwqq1tBeTF/5GpNHAiNVdTRw+gleezdwBoCIdAUGAZkikiAiEb7ticBEYPMJXssYYxolM8/bxdVqEA3kG01d7Q7g0brKishCvL2TEkUkC7gPCPOd50ngt8ACEdkICHCXqu4XkVOBp0TEgzeBPaiqliCMMS0qM6+Y7vGRRIc36tdkm3Ii37zefl+qOus4+7OB6X62rwBGnEBcxhhzwr7Z3757MMGJrUltU20YY9okVSUzr/1O0let3hqEiBTiPxEIEBWQiIwxxmH7i8opdFe2+xpEvQlCVeNaKhBjjAkW3zdQt+8axIk8YjLGmDYp09fFtV877uIKliCMMeYYmXlFRIS66NmxfT9JtwRhjDFH2bm/mJTEGFyu9jlJXzVLEMYYc5T2PklfNUsQxhhTS0WVh90HS9p9F1ewBGGMMUf4Jq+ISo9yUhdLEJYgjDGmls3Z3hmFhvXocJySbZ8lCGOMqSUju4DIMFe7HwMBliCMMeYIm7MLGNytAyHtvAcTWIIwxpgaqkpGdj5D7fESYAnCGGNqZB0qpcBdae0PPpYgjDHGZ/NebwP10O6WIMAShDHG1MjILsAlMLibJQiwBGGMMTU2Z+fTLymWqPAQp0MJCgFNECIyX0RyRWRTHfvjReRtEflKRDJE5Jpa+64Ske2+11WBjNMYY8Dbg8naH74X6BrEAmBmPftvBjar6ii861f/WUTCRaQT3jWsxwFjgftEJCHAsRpj2rFDxeVk57stQdQS0AShqsuBg/UVAeJERIBYX9lKYAbwgaoeVNVDwAfUn2iMMeaEZGRXN1DHOxxJ8HC6DeKvwBAgG9gI3K6qHqAn8F2tclm+bccQkTkiki4i6Xl5eYGO1xjTRm3emw9gYyBqcTpBzADWAz2AVOCvItKo/zqq+rSqpqlqWlJSUiBiNMa0AxnZBXSPj6RTTLjToQQNpxPENcDr6rUD2AkMBvYAvWqVS/ZtM8aYgLAG6mM5nSB2A2cAiEhXYBCQCbwPTBeRBF/j9HTfNmOMaXal5VV8k1fE0B7W/lBbaCBPLiIL8fZOShSRLLw9k8IAVPVJ4LfAAhHZCAhwl6ru9x37W2C171S/UdX6GruNMabJtu4rwKM2gvpoAU0QqjrrOPuz8dYO/O2bD8wPRFzGGFNb9RQb9ojpSE4/YjLGGMdlZBfQITKU5IQop0MJKpYgjDHtXkZ2AUN7dMA7JMtUswRhjGnXKqs8bN1bYAPk/LAEYYxp13buL6as0mPtD35YgjDGtGs1DdQ9LUEcLaC9mNqiKo+SX1rBoZJy8ksryC+p4HBpue+9gtLyKhJjI+gWH0n3+Ei6xUfStUMkYSGWi40JRhnZBYSHuuifFOt0KEHHEgSw6Ktsissqfa8qissrKSqrpKSskgJ3JQeLyzlcUs6hkgoK3BWo1n2u8BAX5VWeI7aJQOeYCMJCBI8qquBRAMWjEBYiRIWFEBkWQlR4CNHhIUSFhSAilFd6KKusorzSQ3mVh/JKD5VVSohLCHEJoSFCiMtFqO9zZFgIkaEuonzniPS9EqLDSIyNIDEugsTYcJJiI+gUE06oJS7TzmVk5zOoa5z9EeeHJQjg7tc2UFJeVfM5MsxFbEQo0eGhdIgKJSE6nF6dokmIDqNjdDgJ0WEkRIcTHx1GxyjvtvioMDpEhhLiEgrclezLd7M3v9T37ia30E2VRxEElwtEBMGbPCqrlJLyKkorqnBXVFFSXsWh4go8qkSEuggPdREdHkrHUBfhIS5CfYmmskqp8iiVHu97RZWH/NIKciu85yqtdc6KqmOzmgj0S4zh1P6JnNq/M+P7dSbB5qEx7Yiqsjm7gOlDuzkdSlCyBAEsvm0yUWEhREeEEBPu/SV/IuKjwoiPCmNQt7hmivDEqCpFZZXsLypnf1EZ+wvL2F9URl5hGRv25PPa2iye++JbRGBItw6c2r8zI5Lj6RAZRmxkKHGRocRGhBIXGUZsxInfH2OCxd58N4dKKqz9oQ6WIICUxBinQwgoESEuMoy4yDC/37WiysOGrMOs/OYAK745wLNffEt5pcfPmaBDZCjzZg7mirG9cVmiMK1c9RoQ1oPJP0sQhrAQF2P6dGJMn07ccvoA3BVVZB0qpdBdQVFZJYXuSgrdFRS6K/loay6/fnMTb63bwx8uGsGArsFRSzKmKTZnFyACg7tZgvDHEoQ5RmRYCCd18d+j42eTUnh1TRa/X7KFcx7/lJumnsRN0/oTEWqLvJvgpap+R0lnZOeT0jmGmAj7VeiP3RXTKCLCJWm9mDa4C795ezOP/Xc7izfu5bcXDCc5IYrDvm6/h0sqOFxSToG7ktG9OjKhf2ebxsC0uANFZdz12kY+3Z7H5AFJ/GBkd84Y0oW4yDDA+4gptXdHh6MMXpYgTJMkxkbw+KzRXHhyT+59YxOz/vFFveVTEmP48djeXDwm2VbsMi3i0+153PHKV+SXVvCDEd1ZmXmAD7fkEB7qYsrAJM4Y3IU9h0u5Ynxvp0MNWpYgzAmZNqgLS39+Gm9/lU2IS+gYHU7H6DASosOIjwonMszFh1tyeOGL3fx+yRYeen8b54zoxo/H9eGUvglWqzDNrrzSw5+WbuPp5ZkM6BLLs9eOZUj3Dng8yrrvDvHOhr28u3EfH2zOAWwNiPqI1jfqq5VJS0vT9PR0p8Mwddi2r5AXv/yW19ftodBdyYie8dw1czCTBiQ27kRTp3rfly1r7hBNK5eZV8RtL61j054CfjK+N786ZyhR4ce2j3k8ytrdh8jILuCKcb3b9YBREVmjqml+91mCMC2tpLySReuz+ctHO9hzuJRJJyVy18zBjEhu4GyaliCMH29/lc1dr20gPNTFHy8eyfRhNvitIepLEAFLmyIyX0RyRWRTHfvnich632uTiFSJSCffvuO8DY0AABPASURBVF0istG3z37jtzHR4aFcPrY3H/1iCr/+wVAysvM576+fccuLa9m1v9jp8EwrtHjDXm5/aR3De8Tz3u2nWXJoJoGsVy0AZta1U1UfUtVUVU0F7gE+OWrd6Wm+/X4zm2n9IkJD+NmkFD75n2ncevpJ/HdLLmc+/Am/eXszZZVVxz+BMcBHW3O4/aV1pPXpxDPXjqVbfKTTIbUZAUsQqrocOHjcgl6zgIWBisUEtw6RYdw5fRCfzJvKJWm9mP/5Tq74x5fsLypzOjQT5Fbs2M8Nz69laI8O/OvqNL/tDabpHG+ZEZFovDWN12ptVmCpiKwRkTnORGZaWpcOkfzhohH8ZdZoNmXnc/5fPiMjO9/psEyQWvPtIWY/m05K5xieuWZszdgG03wcTxDAecDnRz1emqSqJwNnAzeLyGl1HSwic0QkXUTS8/LyAh2raQHnjerBf64/FQUufmIFizfsdTokE2Q27cnn6n+voktcBM/NHmuzEAdIMCSIyznq8ZKq7vG95wJvAGPrOlhVn1bVNFVNS0pKCmigpuWMSI7nrVsmMrR7B25+cS0PL92Gx9N2etyZptuRW8hP568iLiKU52ePo0uctTkEiqMJQkTigSnAW7W2xYhIXPXPwHTAb08o07Z1iYtk4ZzxXDImmcc/2sENz6+xxut2zuNRfvZMOi4RXrhuPMkJ0U6H1KYFbCS1iCwEpgKJIpIF3AeEAajqk75iFwJLVbV238auwBu+EbahwIuq+l6g4jTBLSI0hD/+aCSDusXxu8VbuPeNTfwRsPHX7dP6rMN8e6CEhy8d1ean6Q8GAUsQqjqrAWUW4O0OW3tbJjAqMFGZ1khEmD25HwXuSh7/73buyHfT3boytkvvb9pHWIhwxpCuTofSLgRDG4QxDTL3jAGcPbwb3x4o5lBJhdPhmBamqry7aR+n9k8kPsp6LLUESxCm1XC5hD9fOoro8FB25BayPafQ6ZBMC9qyt5DdB0uYOdxGSbcUSxCmVYkOD2VQtzhcIsx+Np1DxeVOh2RayHsZ+3AJnDXUHi+1FEsQptWJCHUxsGscew+7ufGFNVRU+V8/27Qt72/axyl9O5EYG+F0KO2GrQdhWqW4yFAevHgEd7zyFf/7VgY/Gd+brEOlfHewhKxDpWQdKmHPYTdXju/Dj8fZgjCtXWZeEdtyCrnvvKFOh9KuWIIwrdZFJyfzdU4RT37yDQtX7a7ZHhMeQq9O0ZRXerh/UQaje3dkiC0K06q9l7EPgBk2S2uLsgRhWrV5MwYxoqd3HYlenaLolRBNx+gwRIQDRWXMePRTfv7yet68eSKRYTaRW2v1/qZ9jEqOp0fHKKdDaVesDcK0aiEu4dyR3Tl3ZHdGJnckISa8ZhnTzrERPPSjkWzdV8if3t/mcKSmqfYcLuWrrHxmDu/udCjtjiUI06ZNG9yFK8f34Z+f7eTzHfudDsc0wdKax0vWe6mlWYIwbd4vzxlCv6QY7nzlK/JtgF2r8+6mfQzqGke/pFinQ2l3LEGYNi8qPIRHL0tlf1EZ975l8z62JnmFZazeddAGxznEEoRpF0Ymd2TumQN4+6ts3lq/x+lwTAN9uCUHVSxBOMQShGk3bpx6Eml9Erj3zU3sOVzqdDimAd7btI8+naMZ3C3O6VDaJevmatqNEJfwyGWpzHx0Oaf98WOiwkKIDHMRERpCRPV7qIvIMJdvX/XLRUx4KClJMQzsGsfALnHER9tkcYGWX1rBim/2c+3ElJqeaaZlWYIw7UqvTtE8+7NxfLglh7IKD+7KKsoqPJRVVuGuea9if1E57ooq3L7the4K3BXfT+nRtUMEA7vGMbhbHLMn96NrB5t+vLl9tDWHiiq1x0sOsgRh2p0xfRIY0yehUcd4PMqew6Vszy3k65wivs4pZHtOEc+s+JZPt+/nPzdMIC6y/dQq1u4+RHJCVECX+3xv0z66dYhkVHLHgF3D1M8ShDEN4HIJvTpF06tTNKcP/r4//qfb87j636u5beE6/vHTNEJD2n6zXvbhUn70xAo6x0Yw/6pTGJEc3+zXKHBX8MnXeVyW1guXyx4vOaXt/2s2JoAmD0jigfOH8fG2PH63eIvT4bSIV9K/w6MQ6hIufWolH2zOafZr3PdWBhVVyiVpvZr93KbhApYgRGS+iOSKiN+O5yIyT0TW+16bRKRKRDr59s0UkW0iskNE7g5UjMY0h5+M78O1E1NYsGIXz63c5XQ4AVXlUV5e/R2TBySy6JZJDOway5zn0pn/2c5mu8Zb6/fwxro93Hb6AIb3bP7aiWm4QNYgFgAz69qpqg+paqqqpgL3AJ+o6kERCQH+BpwNDAVmiYjN8WuC2q/OHcIZg7tw/9ub+eTrPKfDCZhPvs5lb76bH4/tTVJcBC/NmcD0oV35zTubue+tTVSe4Noc3x0s4d43NjGmTwI3T+vfTFGbpgpYglDV5cDBBhafBSz0/TwW2KGqmapaDrwEXBCAEI1pNiEu4bFZoxnYNY5bXljL1210OdQXv/yOxNgIzvSt6hYVHsITV4xhzmn9eGblt8x5bg0Hi8spq6zC49FGnbvKo9zxynoUePSy1HbRnhPsHG+kFpFovDWNW3ybegLf1SqSBYyr5/g5wByA3r1tYRjjnNiIUP51VRo//NvnXLtgNW/ePLFNrX62L9/NR1tzuH5Kf8Jq/fJ2uYRfnjOE3p2iuW9RBif/9oOafSEuIdQlhIW4vPvPG8q4fp39nv+JZTtYvesQD186il6dogP+fczxOZ4ggPOAz1W1obWNI6jq08DTAGlpaY37k8WYZtajYxT/vCqNS59ayZxn03nxuvFtZh2K6sbpy0/x33D8k/F9GNK9A2u+PUhFlVJR5aHS915e5eGDzTlc9vQXzBrbi7vPHkJ81Pfdgtd/d5hHP9zOeaN6cOHoni31lcxxBEOCuJzvHy8B7AFq/wtM9m0zplUYmdyRRy5N5cYX1nL3axt45LLUVj8SuLpxetJJifTpHFNnufrGmMybMYhHPviaf322kw+35PLA+cM4e3g3SsqrmPvSOrp2iOR3Pxze6u9VW+LoQz4RiQemAG/V2rwaGCAiKSISjjeBLHIiPmOa6uwR3fnF9IG8uT6bvy/7xulwAMgvqaDA3bTpzpdvz2PP4VJmjW36Y9zo8FB+de5Q3rp5El3iIrjphbVc9+wa7n59I98eLOHPl446olZhnBewGoSILASmAokikgXcB4QBqOqTvmIXAktVtbj6OFWtFJFbgPeBEGC+qmYEKk5jAuXmaSexI7eIh97fRr/EGM4e0TIrouUVlrHm24Nk7i9mZ14xO/d7XweKywkPdXHxyclcNzmlUesrLPxyN51jwjlr6Ikv2jMiOZ63bp7Ivz7bySMffo27wsNNU/szvo62CeOcgCUIVZ3VgDIL8HaHPXr7EmBJ80dlTMsRER68eCS7D5bw81fWk5wQHZBRx7XtyC3ikidXcMi3MFKXuAhSEmOYPqwrKYkx7DpQwqtrsnhp9W7OGtKV66f0Y0yfTvWeM7fAzX+35jJ7cgrhoc3z0CE0xMX1U/pz9vDufLwt94RqJiZwgqENwpg2KzIshKeu9PZsmv3sahbdMilgE/vtOVzKlf/6khCXi1eun8DQHh2IjTj2f/E7zhrIsyt28ewX37J0cw5j+iRww5T+nDmki9/n//9Zk0WVR7n8lOb/Jd67czRXndq32c9rmod1NDYmwJLiIvjnVWkUuSuZ/Uw6peVVzX6NA0VlXPmvLykqq+TZa8cyNqWT3+QAkBgbwR3TB7Hi7tO5/7yh5BS4ue7ZdC55ciXrvzt8RFmPR1m4ajen9u9MSmLdjdOmbbIEYUwLGNK9A49dPppN2fnc8PwaDhSVNdu5C90VXP3v1WQfLmX+1acwtEeHBh0XHR7K1RNTWPaLqfzhohHsOlDMD//2OXNfWlezoNJnO/aTdejEGqdN62UJwpgWcubQrvz+hyNY8c1+pj+ynMUb9p7wOd0VVcx5dg1b9hbwxBVjOKVv/e0J/oSGuJg1tjfL5k3j5mn9WbJpH6f/aRkPvb+VBSt20SkmnOnDTrxx2rQ+liCMaUE/Htebd26dTM+EKG5+cS03vbCG/U2sTVRWebh14TpWZh7gz5eOYtrgLicUW2xEKPNmDOajO6cwc3g3/vbxN3y0NZcfjUkmIrRtDPYzjWMJwpgWNqhbHK/feCr/M3MQH27OZfojy3n7q2xUGz4RwOGScn7xn6/4YHMOD5w/jAtSm2/0cXJCNI9dPpo3b57IrLG9mT0ppdnObVoX68VkjANCQ1zcNPUkzhrSlV+8uoFbF67jzXV7uOyUXpw2MKnO6Tn2HC7ln59m8vLq7ygpr+LOswYGrBdQaq+OpPay1dzaM0sQxjhoQNc4XrthAv/8bCdPLPuG/27NJSY8hGmDu3DOiO5MHZREdHgoW/YW8PTyTBZ9lY0A56f24PrT+jOoW5zTX8G0YZYgjHFYaIiLG6b052eTUvgi8wBLNu5jacY+3tmwl8gwFwO7xrEhK5/o8BCuPrUvP5uUQo+OUU6HbdoBSxDGBImwEBeTByQxeUASv/vhcFbtPMi7m/aybvdhfjF9IFeO70t8tM1VZFqOJQhjglCIS5jQvzMT+tv8RMY51ovJGGOMX5YgjDHG+GUJwhhjjF+WIIwxxvhlCcIYY4xfliCMMcb4ZQnCGGOMX5YgjDHG+CWNmUEy2IlIHvBtA4rGA/knWK6uff62H72tvs+JwP4GxNZYDf3OTTnG7lP7u091xdYcx9h9atn7NEBV/S+Wrqrt7gU8faLl6trnb/vR2+r7DKQ7+Z3tPtl9cvpe2X1y9j7VfrXXR0xvN0O5uvb52370tuN9DoSmXMPuU/Me05buU1Ov05Bj7D45e59qtKlHTG2BiKSraprTcQQ7u08NY/epYew++ddeaxDB7GmnA2gl7D41jN2nhrH75IfVIIwxxvhlNQhjjDF+WYIwxhjjlyUIY4wxflmCaEVEZKqIfCoiT4rIVKfjCWYiEiMi6SLyA6djCVYiMsT3b+lVEbnR6XiClYj8UET+ISIvi8h0p+NpSZYgWoiIzBeRXBHZdNT2mSKyTUR2iMjdxzmNAkVAJJAVqFid1Ez3CeAu4JXAROm85rhPqrpFVW8ALgUmBjJepzTTfXpTVa8DbgAuC2S8wcZ6MbUQETkN7y/3Z1V1uG9bCPA1cBbeX/irgVlACPCHo05xLbBfVT0i0hV4WFWvaKn4W0oz3adRQGe8iXS/qr7TMtG3nOa4T6qaKyLnAzcCz6nqiy0Vf0tprvvkO+7PwAuquraFwndcqNMBtBequlxE+h61eSywQ1UzAUTkJeACVf0DUN+jkUNARCDidFpz3Cff47cYYChQKiJLVNUTyLhbWnP9e1LVRcAiEVkMtLkE0Uz/ngR4EHi3PSUHsAThtJ7Ad7U+ZwHj6iosIhcBM4COwF8DG1pQadR9UtVfAYjI1fhqXQGNLng09t/TVOAivH9sLAloZMGlUfcJuBU4E4gXkZNU9clABhdMLEG0Iqr6OvC603G0Fqq6wOkYgpmqLgOWORxG0FPVx4HHnY7DCdZI7aw9QK9an5N928yR7D41jN2nhrH71ECWIJy1GhggIikiEg5cDixyOKZgZPepYew+NYzdpwayBNFCRGQhsBIYJCJZIvIzVa0EbgHeB7YAr6hqhpNxOs3uU8PYfWoYu08nxrq5GmOM8ctqEMYYY/yyBGGMMcYvSxDGGGP8sgRhjDHGL0sQxhhj/LIEYYwxxi9LEKbNE5GiFr7eiha+XkcRuaklr2naB0sQxjSSiNQ7h5mqntrC1+wIWIIwzc4ShGmXRKS/iLwnImt8q/QN9m0/T0S+FJF1IvKhb+0NROR+EXlORD4HnvN9ni8iy0QkU0Ruq3XuIt/7VN/+V0Vkq4i84Js6GhE5x7dtjYg8LiLHrFkhIleLyCIR+Qj4r4jEish/RWStiGwUkQt8RR8E+ovIehF5yHfsPBFZLSIbROSBQN5L03bZbK6mvXoauEFVt4vIOODvwOnAZ8B4VVURmQ38D3Cn75ihwCRVLRWR+4HBwDQgDtgmIk+oasVR1xkNDAOygc+BiSKSDjwFnKaqO33TQdTlZGCkqh701SIuVNUCEUkEvhCRRcDdwHBVTQUQ77KYA/CueyB413s4TVWXN/lumXbJEoRpd0QkFjgV+I/vD3r4fgGmZOBlEekOhAM7ax26SFVLa31erKplQJmI5AJdOXYp2FWqmuW77nqgL94VzjJVtfrcC4E5dYT7gaoerA4d+D/fKmkevOsadPVzzHTfa53vcyzehGEJwjSKJQjTHrmAw9V/cR/lL3iXc13kW1Dn/lr7io8qW1br5yr8///UkDL1qX3NK4AkYIyqVojILrzLqh5NgD+o6lONvJYxR7A2CNPuqGoBsFNELgHvkpIiMsq3O57v1wa4KkAhbAP61VoK87IGHhcP5PqSwzSgj297Id7HXNXeB6711ZQQkZ4i0uWEozbtjtUgTHsQLSK1H/08jPev8SdE5F4gDHgJ+ApvjeE/InII+AhIae5gfG0YNwHviUgx3vUJGuIF4G0R2QikA1t95zsgIp+LyCa86ybPE5EhwErfI7Qi4CdAbnN/F9O22XTfxjhARGJVtcjXq+lvwHZVfcTpuIypzR4xGeOM63yN1hl4Hx1Ze4EJOlaDMMYY45fVIIwxxvhlCcIYY4xfliCMMcb4ZQnCGGOMX5YgjDHG+GUJwhhjjF//H5KGgimKy9CzAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "(<matplotlib.axes._subplots.AxesSubplot at 0x7ff986e53190>,\n",
       " 0.036492170789302746)"
      ]
     },
     "execution_count": 40,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "lr_finder.plot(show_lr=lr)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "ZhHutCseBxjJ"
   },
   "source": [
    "## Training the Emotion Classifier"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "q3FiLr3LBrjs",
    "outputId": "cda9d5ff-144a-4bcb-a404-b313ddf102de"
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/usr/local/lib/python3.7/dist-packages/transformers/models/auto/modeling_auto.py:882: FutureWarning: The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use `AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and `AutoModelForSeq2SeqLM` for encoder-decoder models.\n",
      "  FutureWarning,\n"
     ]
    }
   ],
   "source": [
    "hparams = Namespace(\n",
    "    train_path=train_path,\n",
    "    val_path=val_path,\n",
    "    test_path=test_path,\n",
    "    batch_size=32,\n",
    "    warmup_steps=100,\n",
    "    epochs=1,\n",
    "    lr=lr,\n",
    "    accumulate_grad_batches=1\n",
    ")\n",
    "module = TrainingModule(hparams)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "N8Jv_U25B37g"
   },
   "outputs": [],
   "source": [
    "## garbage collection\n",
    "import gc; gc.collect()\n",
    "torch.cuda.empty_cache()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 867,
     "referenced_widgets": [
      "163afdc0b9264042b077d18e0eb52a6b",
      "1cb6a608fb424ebba37963363dd0bfbe",
      "8da4e895f98845e08267b25d32eeef50",
      "5193bb81089f4b0f8e4edd5b3f5217f3",
      "b0f51d2ab93c4eba9a43a5a05935600c",
      "8724d5cfe6a6463f83e9ad5f5954607b",
      "179400f1591c4b42980ad2a0b3fc785e",
      "2a7a08f6d7484ff1a3174d68ca167b8e",
      "096cd19c21354a7dac1c45daa1af460d",
      "a157658902f34eb3a7c63cbfcb3e53c7",
      "24b055e798604635abe3c346845cdacc",
      "7ab54ba7ccc9484a8c8b2605d35a6a9c",
      "55690e54a4ce492bbd234fd380be63ee",
      "85007e2fd3204764b63fbf2277c1005d",
      "84201a6f02fb405ea11b7716ab204a04",
      "7c368c0d395f492dbf31beadd460e281",
      "f4a53c58c5c64fd094d30aa26cd4d1d9",
      "f73a02a5670a4d66a3dc8e386a2f56e5",
      "db921fe611024aa9adcc3caa4dc89a39",
      "91dae13977c347079c8c2421acae1e67",
      "af78532809f14e63856e426d601e807e",
      "4b9f99f4c5ad44fa8f6c841bc00d8868"
     ]
    },
    "id": "oRnl4HXvB5-T",
    "outputId": "b3c07d45-af92-4226-f68a-bb97cc1c215e"
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/connectors/callback_connector.py:97: LightningDeprecationWarning: Setting `Trainer(progress_bar_refresh_rate=10)` is deprecated in v1.5 and will be removed in v1.7. Please pass `pytorch_lightning.callbacks.progress.TQDMProgressBar` with `refresh_rate` directly to the Trainer's `callbacks` argument instead. Or, to disable the progress bar pass `enable_progress_bar = False` to the Trainer.\n",
      "  f\"Setting `Trainer(progress_bar_refresh_rate={progress_bar_refresh_rate})` is deprecated in v1.5 and\"\n",
      "GPU available: True, used: True\n",
      "TPU available: False, using: 0 TPU cores\n",
      "IPU available: False, using: 0 IPUs\n",
      "HPU available: False, using: 0 HPUs\n",
      "Missing logger folder: /content/lightning_logs\n",
      "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
      "/usr/local/lib/python3.7/dist-packages/transformers/optimization.py:309: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
      "  FutureWarning,\n",
      "\n",
      "  | Name  | Type             | Params\n",
      "-------------------------------------------\n",
      "0 | model | EmoModel         | 82.1 M\n",
      "1 | loss  | CrossEntropyLoss | 0     \n",
      "-------------------------------------------\n",
      "82.1 M    Trainable params\n",
      "0         Non-trainable params\n",
      "82.1 M    Total params\n",
      "328.492   Total estimated model params size (MB)\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "163afdc0b9264042b077d18e0eb52a6b",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Sanity Checking: 0it [00:00, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "7ab54ba7ccc9484a8c8b2605d35a6a9c",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Training: 0it [00:00, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "ename": "RuntimeError",
     "evalue": "ignored",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mRuntimeError\u001b[0m                              Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-29-9d9e678cd6b9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m      3\u001b[0m                      accumulate_grad_batches=hparams.accumulate_grad_batches)\n\u001b[1;32m      4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mtrainer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path)\u001b[0m\n\u001b[1;32m    770\u001b[0m         \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstrategy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    771\u001b[0m         self._call_and_handle_interrupt(\n\u001b[0;32m--> 772\u001b[0;31m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_fit_impl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrain_dataloaders\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mval_dataloaders\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdatamodule\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mckpt_path\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    773\u001b[0m         )\n\u001b[1;32m    774\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py\u001b[0m in \u001b[0;36m_call_and_handle_interrupt\u001b[0;34m(self, trainer_fn, *args, **kwargs)\u001b[0m\n\u001b[1;32m    722\u001b[0m                 \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstrategy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlauncher\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlaunch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrainer_fn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrainer\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    723\u001b[0m             \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 724\u001b[0;31m                 \u001b[0;32mreturn\u001b[0m \u001b[0mtrainer_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    725\u001b[0m         \u001b[0;31m# TODO: treat KeyboardInterrupt as BaseException (delete the code below) in v1.7\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    726\u001b[0m         \u001b[0;32mexcept\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mexception\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py\u001b[0m in \u001b[0;36m_fit_impl\u001b[0;34m(self, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path)\u001b[0m\n\u001b[1;32m    810\u001b[0m             \u001b[0mckpt_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel_provided\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel_connected\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlightning_module\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    811\u001b[0m         )\n\u001b[0;32m--> 812\u001b[0;31m         \u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_run\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mckpt_path\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mckpt_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    813\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    814\u001b[0m         \u001b[0;32massert\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstate\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstopped\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self, model, ckpt_path)\u001b[0m\n\u001b[1;32m   1235\u001b[0m         \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_checkpoint_connector\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresume_end\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1236\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1237\u001b[0;31m         \u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_run_stage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1238\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1239\u001b[0m         \u001b[0mlog\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdetail\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"{self.__class__.__name__}: trainer tearing down\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py\u001b[0m in \u001b[0;36m_run_stage\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m   1322\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredicting\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1323\u001b[0m             \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_run_predict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1324\u001b[0;31m         \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_run_train\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1325\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1326\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m_pre_training_routine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py\u001b[0m in \u001b[0;36m_run_train\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m   1352\u001b[0m         \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_loop\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrainer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1353\u001b[0m         \u001b[0;32mwith\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mautograd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_detect_anomaly\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_detect_anomaly\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1354\u001b[0;31m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_loop\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1355\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1356\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m_run_evaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0m_EVALUATE_OUTPUT\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/loops/base.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m    202\u001b[0m             \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    203\u001b[0m                 \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_advance_start\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 204\u001b[0;31m                 \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madvance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    205\u001b[0m                 \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_advance_end\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    206\u001b[0m                 \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_restarting\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/loops/fit_loop.py\u001b[0m in \u001b[0;36madvance\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    267\u001b[0m         )\n\u001b[1;32m    268\u001b[0m         \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrainer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprofiler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprofile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"run_training_epoch\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 269\u001b[0;31m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_outputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mepoch_loop\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data_fetcher\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    270\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    271\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0mon_advance_end\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/loops/base.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m    202\u001b[0m             \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    203\u001b[0m                 \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_advance_start\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 204\u001b[0;31m                 \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madvance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    205\u001b[0m                 \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_advance_end\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    206\u001b[0m                 \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_restarting\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/loops/epoch/training_epoch_loop.py\u001b[0m in \u001b[0;36madvance\u001b[0;34m(self, data_fetcher)\u001b[0m\n\u001b[1;32m    206\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    207\u001b[0m             \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrainer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprofiler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprofile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"run_training_batch\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 208\u001b[0;31m                 \u001b[0mbatch_output\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbatch_loop\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_idx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    209\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    210\u001b[0m         \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbatch_progress\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mincrement_processed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/loops/base.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m    202\u001b[0m             \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    203\u001b[0m                 \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_advance_start\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 204\u001b[0;31m                 \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madvance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    205\u001b[0m                 \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_advance_end\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    206\u001b[0m                 \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_restarting\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/loops/batch/training_batch_loop.py\u001b[0m in \u001b[0;36madvance\u001b[0;34m(self, batch, batch_idx)\u001b[0m\n\u001b[1;32m     86\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrainer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlightning_module\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mautomatic_optimization\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     87\u001b[0m             \u001b[0moptimizers\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_get_active_optimizers\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrainer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptimizers\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrainer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptimizer_frequencies\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_idx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 88\u001b[0;31m             \u001b[0moutputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptimizer_loop\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msplit_batch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptimizers\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_idx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     89\u001b[0m         \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     90\u001b[0m             \u001b[0moutputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmanual_loop\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msplit_batch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_idx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/loops/base.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m    202\u001b[0m             \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    203\u001b[0m                 \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_advance_start\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 204\u001b[0;31m                 \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madvance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    205\u001b[0m                 \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_advance_end\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    206\u001b[0m                 \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_restarting\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/loops/optimization/optimizer_loop.py\u001b[0m in \u001b[0;36madvance\u001b[0;34m(self, batch, *args, **kwargs)\u001b[0m\n\u001b[1;32m    205\u001b[0m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_batch_idx\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    206\u001b[0m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_optimizers\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptim_progress\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptimizer_position\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 207\u001b[0;31m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptimizer_idx\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    208\u001b[0m         )\n\u001b[1;32m    209\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloss\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/loops/optimization/optimizer_loop.py\u001b[0m in \u001b[0;36m_run_optimization\u001b[0;34m(self, split_batch, batch_idx, optimizer, opt_idx)\u001b[0m\n\u001b[1;32m    254\u001b[0m         \u001b[0;31m# gradient update with accumulated gradients\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    255\u001b[0m         \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 256\u001b[0;31m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_optimizer_step\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moptimizer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mopt_idx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_idx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mclosure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    257\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    258\u001b[0m         \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mclosure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconsume_result\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/loops/optimization/optimizer_loop.py\u001b[0m in \u001b[0;36m_optimizer_step\u001b[0;34m(self, optimizer, opt_idx, batch_idx, train_step_and_backward_closure)\u001b[0m\n\u001b[1;32m    376\u001b[0m             \u001b[0mon_tpu\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrainer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maccelerator\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTPUAccelerator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    377\u001b[0m             \u001b[0musing_native_amp\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrainer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mamp_backend\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mAMPType\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mNATIVE\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 378\u001b[0;31m             \u001b[0musing_lbfgs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mis_lbfgs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    379\u001b[0m         )\n\u001b[1;32m    380\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py\u001b[0m in \u001b[0;36m_call_lightning_module_hook\u001b[0;34m(self, hook_name, pl_module, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1594\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1595\u001b[0m         \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprofiler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprofile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"[LightningModule]{pl_module.__class__.__name__}.{hook_name}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1596\u001b[0;31m             \u001b[0moutput\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1597\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1598\u001b[0m         \u001b[0;31m# restore current_fx when nested context\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/core/lightning.py\u001b[0m in \u001b[0;36moptimizer_step\u001b[0;34m(self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_native_amp, using_lbfgs)\u001b[0m\n\u001b[1;32m   1623\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1624\u001b[0m         \"\"\"\n\u001b[0;32m-> 1625\u001b[0;31m         \u001b[0moptimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mclosure\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moptimizer_closure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1626\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1627\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0moptimizer_zero_grad\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepoch\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_idx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptimizer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptimizer_idx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/core/optimizer.py\u001b[0m in \u001b[0;36mstep\u001b[0;34m(self, closure, **kwargs)\u001b[0m\n\u001b[1;32m    166\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    167\u001b[0m         \u001b[0;32massert\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_strategy\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 168\u001b[0;31m         \u001b[0mstep_output\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_strategy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptimizer_step\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_optimizer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_optimizer_idx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mclosure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    169\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    170\u001b[0m         \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_on_after_step\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/strategies/strategy.py\u001b[0m in \u001b[0;36moptimizer_step\u001b[0;34m(self, optimizer, opt_idx, closure, model, **kwargs)\u001b[0m\n\u001b[1;32m    191\u001b[0m         \"\"\"\n\u001b[1;32m    192\u001b[0m         \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlightning_module\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 193\u001b[0;31m         \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprecision_plugin\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptimizer_step\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mopt_idx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mclosure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    194\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    195\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m_setup_model_and_optimizers\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mModule\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptimizers\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mList\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mOptimizer\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTuple\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mModule\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mList\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mOptimizer\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/plugins/precision/precision_plugin.py\u001b[0m in \u001b[0;36moptimizer_step\u001b[0;34m(self, model, optimizer, optimizer_idx, closure, **kwargs)\u001b[0m\n\u001b[1;32m    153\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpl\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mLightningModule\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    154\u001b[0m             \u001b[0mclosure\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpartial\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_wrap_closure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptimizer_idx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mclosure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 155\u001b[0;31m         \u001b[0;32mreturn\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mclosure\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mclosure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    156\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    157\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m_track_grad_norm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrainer\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m\"pl.Trainer\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/optim/lr_scheduler.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m     63\u001b[0m                 \u001b[0minstance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_step_count\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     64\u001b[0m                 \u001b[0mwrapped\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__get__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minstance\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 65\u001b[0;31m                 \u001b[0;32mreturn\u001b[0m \u001b[0mwrapped\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     66\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     67\u001b[0m             \u001b[0;31m# Note that the returned function here is no longer a bound method,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/optim/optimizer.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m     86\u001b[0m                 \u001b[0mprofile_name\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"Optimizer.step#{}.step\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__class__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     87\u001b[0m                 \u001b[0;32mwith\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mautograd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprofiler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrecord_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprofile_name\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 88\u001b[0;31m                     \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     89\u001b[0m             \u001b[0;32mreturn\u001b[0m \u001b[0mwrapper\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     90\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/transformers/optimization.py\u001b[0m in \u001b[0;36mstep\u001b[0;34m(self, closure)\u001b[0m\n\u001b[1;32m    330\u001b[0m         \u001b[0mloss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    331\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mclosure\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 332\u001b[0;31m             \u001b[0mloss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mclosure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    333\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    334\u001b[0m         \u001b[0;32mfor\u001b[0m \u001b[0mgroup\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mparam_groups\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/plugins/precision/precision_plugin.py\u001b[0m in \u001b[0;36m_wrap_closure\u001b[0;34m(self, model, optimizer, optimizer_idx, closure)\u001b[0m\n\u001b[1;32m    138\u001b[0m         \u001b[0mconsistent\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mthe\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0mPrecisionPlugin\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0msubclasses\u001b[0m \u001b[0mthat\u001b[0m \u001b[0mcannot\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0moptimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mclosure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0mdirectly\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    139\u001b[0m         \"\"\"\n\u001b[0;32m--> 140\u001b[0;31m         \u001b[0mclosure_result\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mclosure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    141\u001b[0m         \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_after_closure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptimizer_idx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    142\u001b[0m         \u001b[0;32mreturn\u001b[0m \u001b[0mclosure_result\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/loops/optimization/optimizer_loop.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m    146\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    147\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mAny\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mAny\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mTensor\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 148\u001b[0;31m         \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_result\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclosure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    149\u001b[0m         \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_result\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloss\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    150\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/loops/optimization/optimizer_loop.py\u001b[0m in \u001b[0;36mclosure\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m    132\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    133\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0mclosure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mAny\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mAny\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mClosureResult\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 134\u001b[0;31m         \u001b[0mstep_output\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_step_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    135\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    136\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mstep_output\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclosure_loss\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/loops/optimization/optimizer_loop.py\u001b[0m in \u001b[0;36m_training_step\u001b[0;34m(self, split_batch, batch_idx, opt_idx)\u001b[0m\n\u001b[1;32m    425\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    426\u001b[0m         \u001b[0;31m# manually capture logged metrics\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 427\u001b[0;31m         \u001b[0mtraining_step_output\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrainer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call_strategy_hook\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"training_step\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0mstep_kwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    428\u001b[0m         \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrainer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstrategy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpost_training_step\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    429\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py\u001b[0m in \u001b[0;36m_call_strategy_hook\u001b[0;34m(self, hook_name, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1764\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1765\u001b[0m         \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprofiler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprofile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"[Strategy]{self.strategy.__class__.__name__}.{hook_name}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1766\u001b[0;31m             \u001b[0moutput\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1767\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1768\u001b[0m         \u001b[0;31m# restore current_fx when nested context\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pytorch_lightning/strategies/strategy.py\u001b[0m in \u001b[0;36mtraining_step\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m    331\u001b[0m         \"\"\"\n\u001b[1;32m    332\u001b[0m         \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprecision_plugin\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain_step_context\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 333\u001b[0;31m             \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtraining_step\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    334\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    335\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0mpost_training_step\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m<ipython-input-25-f7c84d7e269b>\u001b[0m in \u001b[0;36mtraining_step\u001b[0;34m(self, batch, batch_idx)\u001b[0m\n\u001b[1;32m     22\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     23\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0mtraining_step\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_idx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 24\u001b[0;31m         \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"train\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     25\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     26\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0mvalidation_step\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_idx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m<ipython-input-25-f7c84d7e269b>\u001b[0m in \u001b[0;36mstep\u001b[0;34m(self, batch, step_name)\u001b[0m\n\u001b[1;32m     11\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0mstep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstep_name\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"train\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     12\u001b[0m         \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m         \u001b[0mloss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloss\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     14\u001b[0m         \u001b[0mloss_key\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34mf\"{step_name}_loss\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     15\u001b[0m         \u001b[0mtensorboard_logs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0mloss_key\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mloss\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m<ipython-input-25-f7c84d7e269b>\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, X, *args)\u001b[0m\n\u001b[1;32m     19\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     20\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 21\u001b[0;31m         \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     22\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     23\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0mtraining_step\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_idx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m   1100\u001b[0m         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks\n\u001b[1;32m   1101\u001b[0m                 or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1102\u001b[0;31m             \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1103\u001b[0m         \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1104\u001b[0m         \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m<ipython-input-13-c355932196ab>\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, input_, *args)\u001b[0m\n\u001b[1;32m     20\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     21\u001b[0m         \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mattention_mask\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minput_\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m         \u001b[0mhidden_states\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbase_model\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mattention_mask\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mattention_mask\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     23\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     24\u001b[0m         \u001b[0;31m# maybe do some pooling / RNNs... go crazy here!\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m   1100\u001b[0m         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks\n\u001b[1;32m   1101\u001b[0m                 or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1102\u001b[0;31m             \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1103\u001b[0m         \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1104\u001b[0m         \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/transformers/models/roberta/modeling_roberta.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, encoder_hidden_states, encoder_attention_mask, past_key_values, use_cache, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m    858\u001b[0m             \u001b[0moutput_attentions\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_attentions\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    859\u001b[0m             \u001b[0moutput_hidden_states\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_hidden_states\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 860\u001b[0;31m             \u001b[0mreturn_dict\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mreturn_dict\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    861\u001b[0m         )\n\u001b[1;32m    862\u001b[0m         \u001b[0msequence_output\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mencoder_outputs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m   1100\u001b[0m         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks\n\u001b[1;32m   1101\u001b[0m                 or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1102\u001b[0;31m             \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1103\u001b[0m         \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1104\u001b[0m         \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/transformers/models/roberta/modeling_roberta.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_values, use_cache, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m    531\u001b[0m                     \u001b[0mencoder_attention_mask\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    532\u001b[0m                     \u001b[0mpast_key_value\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 533\u001b[0;31m                     \u001b[0moutput_attentions\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    534\u001b[0m                 )\n\u001b[1;32m    535\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m   1100\u001b[0m         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks\n\u001b[1;32m   1101\u001b[0m                 or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1102\u001b[0;31m             \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1103\u001b[0m         \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1104\u001b[0m         \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/transformers/models/roberta/modeling_roberta.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions)\u001b[0m\n\u001b[1;32m    415\u001b[0m             \u001b[0mhead_mask\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    416\u001b[0m             \u001b[0moutput_attentions\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_attentions\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 417\u001b[0;31m             \u001b[0mpast_key_value\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself_attn_past_key_value\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    418\u001b[0m         )\n\u001b[1;32m    419\u001b[0m         \u001b[0mattention_output\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself_attention_outputs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m   1100\u001b[0m         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks\n\u001b[1;32m   1101\u001b[0m                 or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1102\u001b[0;31m             \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1103\u001b[0m         \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1104\u001b[0m         \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/transformers/models/roberta/modeling_roberta.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions)\u001b[0m\n\u001b[1;32m    344\u001b[0m             \u001b[0mencoder_attention_mask\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    345\u001b[0m             \u001b[0mpast_key_value\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 346\u001b[0;31m             \u001b[0moutput_attentions\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    347\u001b[0m         )\n\u001b[1;32m    348\u001b[0m         \u001b[0mattention_output\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutput\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself_outputs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhidden_states\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m   1100\u001b[0m         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks\n\u001b[1;32m   1101\u001b[0m                 or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1102\u001b[0;31m             \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1103\u001b[0m         \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1104\u001b[0m         \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/transformers/models/roberta/modeling_roberta.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions)\u001b[0m\n\u001b[1;32m    239\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    240\u001b[0m         \u001b[0;31m# Take the dot product between \"query\" and \"key\" to get the raw attention scores.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 241\u001b[0;31m         \u001b[0mattention_scores\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmatmul\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mquery_layer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey_layer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtranspose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    242\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    243\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mposition_embedding_type\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"relative_key\"\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mposition_embedding_type\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"relative_key_query\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mRuntimeError\u001b[0m: CUDA out of memory. Tried to allocate 48.00 MiB (GPU 0; 11.17 GiB total capacity; 10.52 GiB already allocated; 13.81 MiB free; 10.56 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF"
     ]
    }
   ],
   "source": [
    "## train roughly for about 10-15 minutes with GPU enabled.\n",
    "trainer = pl.Trainer(gpus=1, max_epochs=hparams.epochs, progress_bar_refresh_rate=10,\n",
    "                     accumulate_grad_batches=hparams.accumulate_grad_batches)\n",
    "\n",
    "trainer.fit(module)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 272
    },
    "id": "Y8kzE1AeB_ij",
    "outputId": "932f2f1f-fb96-4a4e-a169-85f2150afa80"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "________________________________________________________________________________\n",
      "              precision    recall  f1-score   support\n",
      "\n",
      "     sadness   0.961872  0.955250  0.958549       581\n",
      "         joy   0.958580  0.932374  0.945295       695\n",
      "        love   0.806818  0.893082  0.847761       159\n",
      "       anger   0.936567  0.912727  0.924494       275\n",
      "        fear   0.886364  0.870536  0.878378       224\n",
      "    surprise   0.674699  0.848485  0.751678        66\n",
      "\n",
      "    accuracy                       0.923500      2000\n",
      "   macro avg   0.870817  0.902076  0.884359      2000\n",
      "weighted avg   0.926988  0.923500  0.924647      2000\n",
      "\n"
     ]
    }
   ],
   "source": [
    "with torch.no_grad():\n",
    "    progress = [\"/\", \"-\", \"\\\\\", \"|\", \"/\", \"-\", \"\\\\\", \"|\"]\n",
    "    module.eval()\n",
    "    true_y, pred_y = [], []\n",
    "    for i, batch_ in enumerate(module.test_dataloader()):\n",
    "        (X, attn), y = batch_\n",
    "        batch = (X.cuda(), attn.cuda())\n",
    "        print(progress[i % len(progress)], end=\"\\r\")\n",
    "        y_pred = torch.argmax(module(batch), dim=1)\n",
    "        true_y.extend(y.cpu())\n",
    "        pred_y.extend(y_pred.cpu())\n",
    "print(\"\\n\" + \"_\" * 80)\n",
    "print(classification_report(true_y, pred_y, target_names=label2int.keys(), digits=len(emotions)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "U0_Z_4Pkl3fc",
    "outputId": "a45a771a-1566-4ef7-f935-52633d499c4b"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Sat Apr  2 02:35:31 2022       \n",
      "+-----------------------------------------------------------------------------+\n",
      "| NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |\n",
      "|-------------------------------+----------------------+----------------------+\n",
      "| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |\n",
      "| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |\n",
      "|                               |                      |               MIG M. |\n",
      "|===============================+======================+======================|\n",
      "|   0  Tesla K80           Off  | 00000000:00:04.0 Off |                    0 |\n",
      "| N/A   50C    P0    61W / 149W |  11259MiB / 11441MiB |      0%      Default |\n",
      "|                               |                      |                  N/A |\n",
      "+-------------------------------+----------------------+----------------------+\n",
      "                                                                               \n",
      "+-----------------------------------------------------------------------------+\n",
      "| Processes:                                                                  |\n",
      "|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |\n",
      "|        ID   ID                                                   Usage      |\n",
      "|=============================================================================|\n",
      "+-----------------------------------------------------------------------------+\n"
     ]
    }
   ],
   "source": [
    "!nvidia-smi"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "ifER7sn-Htge"
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "accelerator": "GPU",
  "colab": {
   "collapsed_sections": [],
   "name": "RoBERTa_Fine_Tuning_Emotion_classification.ipynb",
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}