File size: 1,160 Bytes
d3218e7
 
5617cf0
654c025
 
 
d3218e7
 
 
 
 
 
 
 
 
 
 
5617cf0
d3218e7
 
 
 
 
 
 
 
 
 
 
 
 
654c025
 
d3218e7
 
 
 
 
 
 
654c025
 
d3218e7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import gradio as gr


# Set up the model and tokenizer
MODEL_ID = "microsoft/Phi-3.5-mini-instruct"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
os.environ['HF_TOKEN']=os.environ.get('HF_TOKEN')
os.environ['HUGGINGFACEHUB_API_TOKEN']=os.environ.get('HF_TOKEN')


# Load the model with quantization
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)


# Define the function for the Gradio interface
def chat_with_phi(message):
    conversation = [{"role": "user", "content": message}]
    pipe = pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
    )
    response = pipe(conversation)
    return response[0]['generated_text']

# Set up the Gradio interface
app = gr.Interface(
    fn=chat_with_phi,
    inputs=gr.Textbox(label="Type your message:"),
    outputs=gr.Textbox(label="Phi 3.5 Responds:"),
    title="Phi 3.5 Text Chat",
    description="Chat with Phi 3.5 model. Ask anything!",
    theme="huggingface"
)

# Launch the app
app.launch(debug=True)