File size: 2,677 Bytes
eed3dce
ff39d68
4240a50
560a994
 
 
58b2731
ff39d68
560a994
ff39d68
 
 
 
 
 
 
 
560a994
 
d250ad6
 
 
 
560a994
6f488a4
 
ff39d68
c6df2b8
ff39d68
560a994
 
d26fdac
88a4d3b
3c577a6
 
 
6f488a4
d4f0f2b
58b2731
6f488a4
560a994
 
 
ca24370
560a994
 
 
 
 
b29c07d
ca24370
7ea20fe
560a994
 
7ea20fe
560a994
ca24370
560a994
 
ff39d68
 
 
35b1732
ff39d68
35b1732
ff39d68
a212991
 
d250ad6
564ec1c
 
d250ad6
560a994
35b1732
d250ad6
ff39d68
0e1f235
f5dc180
6f488a4
0e1f235
560a994
722ae5b
560a994
 
358709b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
import gradio as gr
import os
import spacy
nlp = spacy.load('en_core_web_sm')

auth_token = os.environ.get("HF_Token")

##Speech Recognition
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
def transcribe(audio):
    text = asr(audio)["text"]
    return text
def speech_to_text(speech):
    text = asr(speech)["text"]
    return text

##Summarization 
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
def summarize_text(text):
    stext = summarizer(text)
    return stext

##Fiscal Sentiment
fin_model = pipeline("text-classification", model="demo-org/auditor_review_model", \
    tokenizer="demo-org/auditor_review_model",use_auth_token=auth_token)
def text_to_sentiment(text):
    sentiment = fin_model(text)[0]["label"]
    return sentiment 

##Company Extraction    
def fin_ner(text):
    print ("ner")
    #ner_pipeline = pipeline("ner", model="dslim/bert-base-NER", tokenizer="dslim/bert-base-NER")
    api = gr.Interface.load("dslim/bert-base-NER", src='models')
    replaced_spans = api(text)
    print (replaced_spans)
    print ("spans2")
    #replaced_spans = [(key, None) if value=='No Disease' else (key, value) for (key, value) in spans]
    return replaced_spans    

##Fiscal Sentiment by Sentence
def fin_ext(text):
    print ("sent")
    doc = nlp(text)
    doc_sents = [sent for sent in doc.sents]
    sents_list = []
    for sent in doc.sents:
        sents_list.append(sent.text)
    results = fin_model(sents_list)
    print (results)
    results_list = []
    for i in range(len(results)):
        results_list.append(results[i]['label'])
    fin_spans = []
    fin_spans = list(zip(sents_list,results_list))
    print (fin_spans)
    return fin_spans    

demo = gr.Blocks()

with demo:

    audio_file = gr.inputs.Audio(source="microphone", type="filepath")
    b1 = gr.Button("Recognize Speech") 
    text = gr.Textbox()
    b1.click(speech_to_text, inputs=audio_file, outputs=text)
    
    b2 = gr.Button("Summarize Text")
    stext = gr.Textbox()
    b2.click(summarize_text, inputs=text, outputs=stext)
    
    b3 = gr.Button("Classify Overall Financial Sentiment")
    label = gr.Label()
    b3.click(text_to_sentiment, inputs=stext, outputs=label)
    
    b4 = gr.Button("Extract Companies & Segments")
    replaced_spans = gr.HighlightedText()
    b4.click(fin_ner, inputs=text, outputs=replaced_spans)
    
    b5 = gr.Button("Extract Financial Sentiment")
    fin_spans = gr.HighlightedText()
    b5.click(fin_ext, inputs=text, outputs=fin_spans)
    
demo.launch()