Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -20,7 +20,121 @@ st.write(pydicom)
|
|
20 |
|
21 |
#def print_memory_usage():
|
22 |
# logging.info(f"RAM memory % used: {psutil.virtual_memory()[2]}")
|
|
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
|
|
|
20 |
|
21 |
#def print_memory_usage():
|
22 |
# logging.info(f"RAM memory % used: {psutil.virtual_memory()[2]}")
|
23 |
+
@st.cache(allow_output_mutation=True, suppress_st_warning=True, max_entries=1)
|
24 |
|
25 |
+
def load_model(model_name):
|
26 |
+
return (
|
27 |
+
AutoModelForSequenceClassification.from_pretrained(model_name),
|
28 |
+
AutoTokenizer.from_pretrained(model_name),
|
29 |
+
)
|
30 |
+
|
31 |
+
print ("before main")
|
32 |
+
|
33 |
+
|
34 |
+
st.title("Transformers Interpet Demo App")
|
35 |
+
|
36 |
+
print ("before main")
|
37 |
+
|
38 |
+
#image = Image.open("./images/tight@1920x_transparent.png")
|
39 |
+
#st.sidebar.image(image, use_column_width=True)
|
40 |
+
st.sidebar.markdown(
|
41 |
+
"Check out the package on [Github](https://github.com/cdpierse/transformers-interpret)"
|
42 |
+
)
|
43 |
+
st.info(
|
44 |
+
"Due to limited resources only low memory models are available. Run this [app locally](https://github.com/cdpierse/transformers-interpret-streamlit) to run the full selection of available models. "
|
45 |
+
)
|
46 |
+
|
47 |
+
# uncomment the options below to test out the app with a variety of classification models.
|
48 |
+
models = {
|
49 |
+
# "textattack/distilbert-base-uncased-rotten-tomatoes": "",
|
50 |
+
# "textattack/bert-base-uncased-rotten-tomatoes": "",
|
51 |
+
# "textattack/roberta-base-rotten-tomatoes": "",
|
52 |
+
# "mrm8488/bert-mini-finetuned-age_news-classification": "BERT-Mini finetuned on AG News dataset. Predicts news class (sports/tech/business/world) of text.",
|
53 |
+
# "nateraw/bert-base-uncased-ag-news": "BERT finetuned on AG News dataset. Predicts news class (sports/tech/business/world) of text.",
|
54 |
+
"distilbert-base-uncased-finetuned-sst-2-english": "DistilBERT model finetuned on SST-2 sentiment analysis task. Predicts positive/negative sentiment.",
|
55 |
+
# "ProsusAI/finbert": "BERT model finetuned to predict sentiment of financial text. Finetuned on Financial PhraseBank data. Predicts positive/negative/neutral.",
|
56 |
+
"sampathkethineedi/industry-classification": "DistilBERT Model to classify a business description into one of 62 industry tags.",
|
57 |
+
"MoritzLaurer/policy-distilbert-7d": "DistilBERT model finetuned to classify text into one of seven political categories.",
|
58 |
+
# # "MoritzLaurer/covid-policy-roberta-21": "(Under active development ) RoBERTA model finetuned to identify COVID policy measure classes ",
|
59 |
+
# "mrm8488/bert-tiny-finetuned-sms-spam-detection": "Tiny bert model finetuned for spam detection. 0 == not spam, 1 == spam",
|
60 |
+
}
|
61 |
+
model_name = st.sidebar.selectbox(
|
62 |
+
"Choose a classification model", list(models.keys())
|
63 |
+
)
|
64 |
+
model, tokenizer = load_model(model_name)
|
65 |
+
|
66 |
+
|
67 |
+
print ("Model loaded")
|
68 |
+
if model_name.startswith("textattack/"):
|
69 |
+
model.config.id2label = {0: "NEGATIVE (0) ", 1: "POSITIVE (1)"}
|
70 |
+
model.eval()
|
71 |
+
print ("Model Evaluated")
|
72 |
+
cls_explainer = SequenceClassificationExplainer(model=model, tokenizer=tokenizer)
|
73 |
+
print ("Model Explained")
|
74 |
+
if cls_explainer.accepts_position_ids:
|
75 |
+
emb_type_name = st.sidebar.selectbox(
|
76 |
+
"Choose embedding type for attribution.", ["word", "position"]
|
77 |
+
)
|
78 |
+
if emb_type_name == "word":
|
79 |
+
emb_type_num = 0
|
80 |
+
if emb_type_name == "position":
|
81 |
+
emb_type_num = 1
|
82 |
+
else:
|
83 |
+
emb_type_num = 0
|
84 |
+
|
85 |
+
explanation_classes = ["predicted"] + list(model.config.label2id.keys())
|
86 |
+
explanation_class_choice = st.sidebar.selectbox(
|
87 |
+
"Explanation class: The class you would like to explain output with respect to.",
|
88 |
+
explanation_classes,
|
89 |
+
)
|
90 |
+
my_expander = st.beta_expander(
|
91 |
+
"Click here for a description of models and their tasks"
|
92 |
+
)
|
93 |
+
with my_expander:
|
94 |
+
st.json(models)
|
95 |
+
|
96 |
+
# st.info("Max char limit of 350 (memory management)")
|
97 |
+
text = st.text_area(
|
98 |
+
"Enter text to be interpreted",
|
99 |
+
"I like you, I love you",
|
100 |
+
height=400,
|
101 |
+
max_chars=850,
|
102 |
+
)
|
103 |
+
print ("Before button")
|
104 |
+
if st.button('Say hello'):
|
105 |
+
st.write('Why hello there')
|
106 |
+
else:
|
107 |
+
st.write('Goodbye')
|
108 |
+
print ("After test button")
|
109 |
+
|
110 |
+
if st.button("Interpret Text"):
|
111 |
+
#print_memory_usage()
|
112 |
+
st.text("Output")
|
113 |
+
with st.spinner("Interpreting your text (This may take some time)"):
|
114 |
+
print ("Interpreting text")
|
115 |
+
if explanation_class_choice != "predicted":
|
116 |
+
word_attributions = cls_explainer(
|
117 |
+
text,
|
118 |
+
class_name=explanation_class_choice,
|
119 |
+
embedding_type=emb_type_num,
|
120 |
+
internal_batch_size=2,
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
word_attributions = cls_explainer(
|
124 |
+
text, embedding_type=emb_type_num, internal_batch_size=2
|
125 |
+
)
|
126 |
+
|
127 |
+
if word_attributions:
|
128 |
+
print ("Word Attributions")
|
129 |
+
word_attributions_expander = st.beta_expander(
|
130 |
+
"Click here for raw word attributions"
|
131 |
+
)
|
132 |
+
with word_attributions_expander:
|
133 |
+
st.json(word_attributions)
|
134 |
+
components.v1.html(
|
135 |
+
cls_explainer.visualize()._repr_html_(), scrolling=True, height=350
|
136 |
+
)
|
137 |
+
print ("end of stuff")
|
138 |
|
139 |
|
140 |
|