rajj0 commited on
Commit
a897f14
·
verified ·
1 Parent(s): 9a53da8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -15
app.py CHANGED
@@ -7,26 +7,42 @@ import os
7
  model_path = "rajj0/autotrain-phi3-midium-4k-godsent-orpo-6"
8
  hf_token = os.getenv("HF_TOKEN") # Get the token from environment variables
9
 
 
 
 
10
  if hf_token is None:
11
  raise ValueError("HF_TOKEN environment variable not set")
12
 
13
- # Load the tokenizer and model with trust_remote_code=True
14
- tokenizer = AutoTokenizer.from_pretrained(model_path, use_auth_token=hf_token, trust_remote_code=True)
15
- model = AutoModelForCausalLM.from_pretrained(
16
- model_path,
17
- device_map="auto",
18
- torch_dtype='auto',
19
- use_auth_token=hf_token,
20
- trust_remote_code=True
21
- ).eval()
 
 
 
 
 
 
 
 
 
22
 
23
  # Function to generate a response from the model
24
  def generate_response(user_input):
25
- messages = [{"role": "user", "content": user_input}]
26
- input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
27
- output_ids = model.generate(input_ids.to('cuda'))
28
- response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
29
- return response
 
 
 
 
30
 
31
  # Create the Gradio interface
32
  iface = gr.Interface(
@@ -39,4 +55,6 @@ iface = gr.Interface(
39
 
40
  # Launch the Gradio interface
41
  if __name__ == "__main__":
42
- iface.launch()
 
 
 
7
  model_path = "rajj0/autotrain-phi3-midium-4k-godsent-orpo-6"
8
  hf_token = os.getenv("HF_TOKEN") # Get the token from environment variables
9
 
10
+ # Debugging: print the token to ensure it's being set
11
+ print(f"HF_TOKEN: {hf_token}")
12
+
13
  if hf_token is None:
14
  raise ValueError("HF_TOKEN environment variable not set")
15
 
16
+ try:
17
+ # Load the tokenizer and model with trust_remote_code=True
18
+ print("Loading tokenizer...")
19
+ tokenizer = AutoTokenizer.from_pretrained(model_path, use_auth_token=hf_token, trust_remote_code=True)
20
+ print("Tokenizer loaded successfully.")
21
+
22
+ print("Loading model...")
23
+ model = AutoModelForCausalLM.from_pretrained(
24
+ model_path,
25
+ device_map="auto",
26
+ torch_dtype='auto',
27
+ use_auth_token=hf_token,
28
+ trust_remote_code=True
29
+ ).eval()
30
+ print("Model loaded successfully.")
31
+ except Exception as e:
32
+ print(f"Error loading model or tokenizer: {e}")
33
+ raise
34
 
35
  # Function to generate a response from the model
36
  def generate_response(user_input):
37
+ try:
38
+ messages = [{"role": "user", "content": user_input}]
39
+ input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
40
+ output_ids = model.generate(input_ids.to('cuda'))
41
+ response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
42
+ return response
43
+ except Exception as e:
44
+ print(f"Error generating response: {e}")
45
+ return "An error occurred while generating the response."
46
 
47
  # Create the Gradio interface
48
  iface = gr.Interface(
 
55
 
56
  # Launch the Gradio interface
57
  if __name__ == "__main__":
58
+ print("Launching Gradio interface...")
59
+ iface.launch()
60
+ print("Gradio interface launched.")