Spaces:
Sleeping
Sleeping
File size: 17,185 Bytes
5d80c84 aa927d1 5d80c84 266ff42 5d80c84 266ff42 5d80c84 266ff42 5d80c84 266ff42 5d80c84 266ff42 5d80c84 266ff42 5d80c84 90e4b7e de5b839 5d80c84 aa927d1 5d80c84 aa927d1 5d80c84 90e4b7e 1d1a7b8 d0b43f2 de5b839 90e4b7e 5d80c84 8baaf77 5d80c84 1d1a7b8 5d80c84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
# chainlit run app.py -w
# Standard library imports
import asyncio
import io
import json
import os
import re
import requests
import zipfile
# Data handling
import pandas as pd
# Environment variables
from dotenv import load_dotenv
# Typing for function signatures
from typing import Any, List, Optional
# Bioinformatics
from Bio import Entrez, Medline
# ChainLit specific imports
import chainlit as cl
from chainlit.types import AskFileResponse
# Langchain imports for AI and chat models
from langchain.chains import ConversationalRetrievalChain, LLMChain
from langchain_community.chat_models import ChatOpenAI
from langchain.docstore.document import Document
from langchain.evaluation import StringEvaluator
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
from langchain.prompts import PromptTemplate
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.smith import RunEvalConfig, run_on_dataset
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.callbacks.tracers.evaluation import EvaluatorCallbackHandler
from langchain_openai import OpenAI, OpenAIEmbeddings
# Vector storage and document loading
from langchain_community.document_loaders import DataFrameLoader
from langchain_community.vectorstores import Qdrant
from qdrant_client import QdrantClient
from qdrant_client import AsyncQdrantClient
# Custom evaluations
from custom_eval import PharmAssistEvaluator, HarmfulnessEvaluator, AIDetectionEvaluator
# LangSmith for client interaction
from langsmith import Client
langsmith_client = Client()
# Load environment variables from a .env file
load_dotenv()
# Define system template for the chatbot
system_template = """
You are , an AI assistant for pharmacists and pharmacy students. Use the following pieces of context to answer the user's question.
If you don't know the answer, simply state that you don't have enough information to provide an answer. Do not attempt to make up an answer.
ALWAYS include a "SOURCES" section at the end of your response, referencing the specific documents from which you derived your answer.
If the user greets you with a greeting like "Hi", "Hello", or "How are you", respond in a friendly manner.
Example response format:
<answer>
SOURCES: <document_references>
Begin!
----------------
{summaries}
"""
# Define messages for the chatbot prompt
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
prompt = ChatPromptTemplate.from_messages(messages)
chain_type_kwargs = {"prompt": prompt}
qdrant_vectorstore = None
# Function to search for related papers on PubMed
async def search_related_papers(query, max_results=3):
"""
Search PubMed for papers related to the provided query and return a list of formatted strings with paper details and URLs.
"""
try:
# Set up Entrez email (replace with your email)
Entrez.email = os.environ.get("ENTREZ_EMAIL")
# Search PubMed for related papers
handle = Entrez.esearch(db="pubmed", term=query, retmax=max_results)
record = Entrez.read(handle)
handle.close()
# Retrieve the details of the related papers
id_list = record["IdList"]
if not id_list:
return ["No directly related papers found. Try broadening your search query."]
handle = Entrez.efetch(db="pubmed", id=id_list, rettype="medline", retmode="text")
records = Medline.parse(handle)
related_papers = []
for record in records:
title = record.get("TI", "")
authors = ", ".join(record.get("AU", []))
citation = f"{authors}. {title}. {record.get('SO', '')}"
url = f"https://pubmed.ncbi.nlm.nih.gov/{record['PMID']}/"
related_papers.append(f"[{citation}]({url})")
if not related_papers:
related_papers = ["No directly related papers found. Try broadening your search query."]
return related_papers
except Exception as e:
print(f"Error occurred while searching for related papers: {e}")
return ["An error occurred while searching for related papers. Please try again later."]
# Function to generate related questions based on retrieved results
async def generate_related_questions(retrieved_results, num_questions=2, max_tokens=50):
"""
Generate related questions based on the provided retrieved results from a document store.
"""
llm = OpenAI(temperature=0.7)
prompt = PromptTemplate(
input_variables=["context"],
template="Given the following context, generate {num_questions} related questions:\n\nContext: {context}\n\nQuestions:",
)
chain = LLMChain(llm=llm, prompt=prompt)
context = " ".join([doc.page_content for doc in retrieved_results])
generated_questions = chain.run(context=context, num_questions=num_questions, max_tokens=max_tokens)
# Remove numbering from the generated questions
related_questions = [question.split(". ", 1)[-1] for question in generated_questions.split("\n") if question.strip()]
return related_questions
# Function to generate answer based on user's query
async def generate_answer(query):
"""
Generate an answer to the user's query using a conversational retrieval chain and handle callbacks for related questions and papers.
"""
# Initialize a message history to track the conversation
message_history = ChatMessageHistory()
# Set up memory to hold the conversation context and return answers
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key="answer",
chat_memory=message_history,
return_messages=True,
)
# Create a retrieval chain combining the LLM and the retriever
chain = ConversationalRetrievalChain.from_llm(
ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True),
chain_type="stuff",
retriever=qdrant_vectorstore.as_retriever(),
memory=memory,
return_source_documents=True,
)
try:
# Define callback handler for asynchronous operations
cb = cl.AsyncLangchainCallbackHandler()
feedback_callback = EvaluatorCallbackHandler(evaluators=[PharmAssistEvaluator(),HarmfulnessEvaluator(),AIDetectionEvaluator()])
# Process the incoming message using the conversational chain
res = await chain.acall(query, callbacks=[cb,feedback_callback])
answer = res["answer"]
source_documents = res["source_documents"]
if answer.lower().startswith("i don't know") or answer.lower().startswith("i don't have enough information"):
return answer, [], [], [],[]
text_elements = []
if source_documents:
for source_idx, source_doc in enumerate(source_documents):
source_name = f"source_{source_idx}"
text_elements.append(
cl.Text(content=source_doc.page_content, name=source_name)
)
source_names = [text_el.name for text_el in text_elements]
if source_names:
answer += f"\n\n**SOURCES:** {', '.join(source_names)}"
else:
answer += "\n\n**SOURCES:** No sources found"
related_questions = await generate_related_questions(source_documents)
related_question_actions = [
cl.Action(name="related_question", value=question.strip(), label=question.strip())
for question in related_questions if question.strip()
]
# Search for related papers on PubMed
related_papers = await search_related_papers(query)
return answer, text_elements, related_question_actions, related_papers, query
except Exception as e:
print(f"Error occurred: {e}")
return "An error occurred while processing your request. Please try again later.", [], [], [],[], query
# Action callback for related question selection
@cl.action_callback("related_question")
async def on_related_question_selected(action: cl.Action):
"""
Handle the selection of a related question, generate and send answers and further interactions.
"""
question = action.value
await cl.Message(content=question, author="User").send()
answer, text_elements, related_question_actions, related_papers, query = await generate_answer(question)
# Send the processed answer back to the user
await cl.Message(content=answer, elements=text_elements, author="PharmAssistAI").send()
# Send related questions as a separate message
if related_question_actions:
await cl.Message(content="**Related Questions:**", actions=related_question_actions, author="PharmAssistAI").send()
# Send related papers as a separate message
if related_papers:
related_papers_content = "**Related Papers from PubMed:**\n" + "\n".join(f"- {paper}" for paper in related_papers)
await cl.Message(content=related_papers_content, author="PharmAssistAI").send()
# Action callback for question selection
@cl.action_callback("ask_question")
async def on_question_selected(action: cl.Action):
"""
Respond to user-selected questions from suggested list, generate and send the answers.
"""
question = action.value
await cl.Message(content=question, author="User").send()
answer, text_elements, related_question_actions, related_papers,query = await generate_answer(question)
await cl.Message(content=answer, elements=text_elements, author="").send()
# Send related questions as a separate message
if related_question_actions:
await cl.Message(content="**Related Questions:**", actions=related_question_actions, author="").send()
# Send related papers as a separate message
if related_papers:
related_papers_content = "**Related Papers from PubMed:**\n" + "\n".join(f"- {paper}" for paper in related_papers)
await cl.Message(content=related_papers_content, author="").send()
# Callback for chat start event
@cl.on_chat_start
async def on_chat_start():
"""
Initialize the chatbot environment, load necessary data, and present initial user interactions.
"""
global qdrant_vectorstore
# Display a preloader message
await cl.Message(content="**Loading PharmAssistAI bot**....").send()
await asyncio.sleep(2) # Add a 2-second delay to simulate loading
# Adding logo for chatbot
await cl.Avatar(
name="",
url="https://i.imgur.com/ZkIVmxp.jpeg",
).send()
# Adding logo for user who is asking questions
await cl.Avatar(
name="User",
url="https://i.imgur.com/XhmbgvT.jpeg",
).send()
if qdrant_vectorstore is None:
embedding_model = OpenAIEmbeddings(model="text-embedding-3-small")
QDRANT_API_KEY=os.environ.get("QDRANT_API_KEY")
QDRANT_CLUSTER_URL =os.environ.get("QDRANT_CLUSTER_URL")
qdrant_client = AsyncQdrantClient(url=QDRANT_CLUSTER_URL, api_key=QDRANT_API_KEY,timeout=60)
response = await qdrant_client.get_collections()
# Extracting the collection names from the response
collection_names = [collection.name for collection in response.collections]
if "fda_drugs" not in collection_names:
print("Collection 'fda_drugs' is not present.")
# Download the data file
url = "https://download.open.fda.gov/drug/label/drug-label-0001-of-0012.json.zip"
response = requests.get(url)
# Extract the JSON file from the zip
zip_file = zipfile.ZipFile(io.BytesIO(response.content))
json_file = zip_file.open(zip_file.namelist()[0])
# Load the JSON data
data = json.load(json_file)
df = pd.json_normalize(data['results'])
selected_drugs = df
# Define metadata fields to include
metadata_fields = ['openfda.brand_name', 'openfda.generic_name', 'openfda.manufacturer_name',
'openfda.product_type', 'openfda.route', 'openfda.substance_name',
'openfda.rxcui', 'openfda.spl_id', 'openfda.package_ndc']
# Define text fields to index
text_fields = ['description', 'indications_and_usage', 'contraindications',
'warnings', 'adverse_reactions', 'dosage_and_administration']
# Replace NaN values with empty strings
selected_drugs[text_fields] = selected_drugs[text_fields].fillna('')
selected_drugs['content'] = selected_drugs[text_fields].apply(lambda x: ' '.join(x.astype(str)), axis=1)
loader = DataFrameLoader(selected_drugs, page_content_column='content')
drug_docs = loader.load()
for doc, row in zip(drug_docs, selected_drugs.to_dict(orient='records')):
metadata = {}
for field in metadata_fields:
value = row.get(field)
if isinstance(value, list):
value = ', '.join(str(v) for v in value if pd.notna(v))
elif pd.isna(value):
value = 'Not Available'
metadata[field] = value
doc.metadata = metadata # Update the metadata to only include specified fields
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
split_drug_docs = text_splitter.split_documents(drug_docs)
# Asynchronously create a Qdrant vector store with the document chunks
qdrant_vectorstore = await cl.make_async(Qdrant.from_documents)(
split_drug_docs,
embedding_model,
url=QDRANT_CLUSTER_URL,
api_key=QDRANT_API_KEY,
collection_name="fda_drugs" # Name of the collection in Qdrant
)
else:
print("Collection 'fda_drugs' is present.")
# Load the existing collection
qdrant_vectorstore = await cl.make_async(Qdrant.construct_instance)(
texts=[""], # no texts to add
embedding = embedding_model,
url=QDRANT_CLUSTER_URL,
api_key=QDRANT_API_KEY,
collection_name="fda_drugs" # Name of the collection in Qdrant
)
potential_questions = [
"What should I be careful of when taking Metformin?",
"What are the contraindications of Aspirin?",
"Are there low-cost alternatives to branded Aspirin available over-the-counter?",
"What precautions should I take if I'm pregnant or nursing while on Lipitor?",
"Should Lipitor be taken at a specific time of day, and does it need to be taken with food?",
"What is the recommended dose of Aspirin?",
"Can older people take beta blockers?",
"How do beta blockers work?",
"Can beta blockers be used for anxiety?",
"I am taking Aspirin, is it ok to take Glipizide?",
"Explain in simple terms how Metformin works?"
]
await cl.Message(
content="**Welcome to PharmAssistAI ! Here are some potential questions you can ask:**",
actions=[cl.Action(name="ask_question", value=question, label=question) for question in potential_questions]
).send()
cl.user_session.set("potential_questions_shown", True)
# Main function to handle user messages
@cl.on_message
async def main(message):
"""
Process user messages, generate and send responses, and handle further interactions based on the user's queries.
"""
query = message.content
try:
answer, text_elements, related_question_actions, related_papers, original_query = await generate_answer(query)
# Create a new message with the answer and source documents
answer_message = cl.Message(content=answer, elements=text_elements, author="PharmAssistAI")
# Send the answer message
await answer_message.send()
if not answer.lower().startswith("i don't know") and not answer.lower().startswith("i don't have enough information"):
# Send related questions as a separate message
if related_question_actions:
await cl.Message(content="**Related Questions:**", actions=related_question_actions, author="PharmAssistAI").send()
# Send related papers as a separate message
if related_papers:
related_papers_content = "**Related Papers from PubMed:**\n" + "\n".join(f"- {paper}" for paper in related_papers)
await cl.Message(content=related_papers_content, author="PharmAssistAI").send()
except Exception as e:
print(f"Error occurred: {e}")
answer = "An error occurred while processing your request. Please try again later."
await cl.Message(content=answer, author="PharmAssistAI").send() |