import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Disable safetensors fast GPU loading (if needed) import os os.environ["SAFETENSORS_FAST_GPU"] = "0" # Cache the model and tokenizer @st.cache_resource def load_model_and_tokenizer(): model_name = "rajrakeshdr/IntelliSoc" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, use_safetensors=False) return model, tokenizer # Load the model and tokenizer model, tokenizer = load_model_and_tokenizer() # Streamlit app title st.title("IntelliSoc Text Generation") # Input prompt prompt = st.text_area("Enter your prompt:", "Once upon a time") # Generate text on button click if st.button("Generate Text"): # Tokenize input inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True) # Generate text with torch.no_grad(): outputs = model.generate( inputs.input_ids, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7 ) # Decode the generated text generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) # Display the generated text st.write("Generated Text:") st.write(generated_text)