File size: 4,304 Bytes
ce28db8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import streamlit as st
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from PIL import Image
import io

# Set page config
st.set_page_config(page_title="CIFAR-10 Classifier", layout="centered", initial_sidebar_state="collapsed")

# Custom CSS for dark theme
st.markdown("""

<style>

    .stApp {

        background-color: #0E1117;

        color: #FAFAFA;

    }

    .stButton>button {

        background-color: #4CAF50;

        color: white;

    }

    .stHeader {

        background-color: #262730;

        color: white;

        padding: 1rem;

        border-radius: 5px;

    }

    .stImage {

        background-color: #262730;

        padding: 10px;

        border-radius: 5px;

    }

    .stSuccess {

        background-color: #262730;

        color: #4CAF50;

        padding: 10px;

        border-radius: 5px;

    }

</style>

""", unsafe_allow_html=True)

# Model definition
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
        self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(64 * 8 * 8, 512)
        self.fc2 = nn.Linear(512, 10)

    def forward(self, x):
        x = self.pool(torch.relu(self.conv1(x)))
        x = self.pool(torch.relu(self.conv2(x)))
        x = x.view(-1, 64 * 8 * 8)
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# Function to train the model
@st.cache_resource
def train_model():
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)

    model = SimpleCNN()
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)

    for epoch in range(5):  # Train for 5 epochs
        for i, data in enumerate(trainloader, 0):
            inputs, labels = data
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

    return model

# Function to load or train the model
@st.cache_resource
def get_model():
    try:
        model = SimpleCNN()
        model.load_state_dict(torch.load('cifar10_model.pth'))
        model.eval()
    except:
        model = train_model()
        torch.save(model.state_dict(), 'cifar10_model.pth')
    return model

# Streamlit app
st.markdown("<h1 class='stHeader'>CIFAR-10 Image Classification</h1>", unsafe_allow_html=True)
st.write("Upload an image to classify it into one of the CIFAR-10 categories.")

# File uploader
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])

if uploaded_file is not None:
    # Display uploaded image
    image = Image.open(uploaded_file)
    st.markdown("<div class='stImage'>", unsafe_allow_html=True)
    st.image(image, caption='Uploaded Image', use_column_width=True)
    st.markdown("</div>", unsafe_allow_html=True)

    # Predict button
    if st.button('Classify Image'):
        # Load model
        model = get_model()

        # Preprocess image
        transform = transforms.Compose([
            transforms.Resize((32, 32)),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
        input_tensor = transform(image).unsqueeze(0)

        # Make prediction
        with torch.no_grad():
            output = model(input_tensor)
            _, predicted = torch.max(output, 1)

        # Display result
        classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
        st.markdown(f"<div class='stSuccess'>Prediction: {classes[predicted.item()]}</div>", unsafe_allow_html=True)

# Footer
st.markdown("---")
st.markdown("<p style='text-align: center; color: #666;'>Created with Streamlit and PyTorch</p>", unsafe_allow_html=True)