rajsecrets0 commited on
Commit
b650c29
Β·
verified Β·
1 Parent(s): d6b56cb

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +339 -0
app.py ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import cv2
3
+ from PIL import Image, ImageEnhance
4
+ import numpy as np
5
+ import time
6
+ from skimage.metrics import structural_similarity as ssim
7
+ import base64
8
+ from datetime import datetime
9
+ import torch
10
+
11
+ # Load pre-trained YOLOv5 model for object detection
12
+ @st.cache_resource
13
+ def load_yolo_model():
14
+ model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
15
+ return model
16
+
17
+ def load_css():
18
+ st.markdown("""
19
+ <style>
20
+ @import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600&display=swap');
21
+
22
+ .stApp {
23
+ background: linear-gradient(135deg, #1a1a1a 0%, #2d2d2d 100%);
24
+ font-family: 'Inter', sans-serif;
25
+ color: #e0e0e0;
26
+ }
27
+
28
+ .main {
29
+ padding: 2rem;
30
+ max-width: 1200px;
31
+ margin: 0 auto;
32
+ }
33
+
34
+ .stButton>button {
35
+ background: linear-gradient(135deg, #2196F3 0%, #1976D2 100%);
36
+ color: white;
37
+ padding: 0.75rem 1.5rem;
38
+ border-radius: 10px;
39
+ border: none;
40
+ box-shadow: 0 4px 6px rgba(0,0,0,0.2);
41
+ transition: all 0.3s ease;
42
+ font-weight: 500;
43
+ letter-spacing: 0.5px;
44
+ }
45
+
46
+ .stButton>button:hover {
47
+ transform: translateY(-2px);
48
+ box-shadow: 0 6px 12px rgba(0,0,0,0.3);
49
+ }
50
+
51
+ .upload-container {
52
+ background: #2d2d2d;
53
+ border-radius: 15px;
54
+ padding: 1.5rem;
55
+ box-shadow: 0 4px 6px rgba(0,0,0,0.2);
56
+ transition: all 0.3s ease;
57
+ margin-bottom: 1rem;
58
+ }
59
+
60
+ .upload-container:hover {
61
+ box-shadow: 0 6px 12px rgba(0,0,0,0.3);
62
+ }
63
+
64
+ .upload-box {
65
+ border: 2px dashed #404040;
66
+ border-radius: 12px;
67
+ padding: 2rem;
68
+ text-align: center;
69
+ background: #333333;
70
+ transition: all 0.3s ease;
71
+ cursor: pointer;
72
+ }
73
+
74
+ .upload-box:hover {
75
+ border-color: #2196F3;
76
+ background: #383838;
77
+ }
78
+
79
+ .results-container {
80
+ background: #2d2d2d;
81
+ border-radius: 15px;
82
+ padding: 2rem;
83
+ box-shadow: 0 4px 6px rgba(0,0,0,0.2);
84
+ color: #e0e0e0;
85
+ }
86
+
87
+ .metric-card {
88
+ background: #333333;
89
+ border-radius: 10px;
90
+ padding: 1rem;
91
+ margin: 0.5rem 0;
92
+ border-left: 4px solid #2196F3;
93
+ color: #e0e0e0;
94
+ }
95
+
96
+ .stProgress > div > div {
97
+ background: linear-gradient(90deg, #2196F3, #64B5F6);
98
+ border-radius: 10px;
99
+ }
100
+
101
+ @keyframes pulse {
102
+ 0% { opacity: 1; }
103
+ 50% { opacity: 0.5; }
104
+ 100% { opacity: 1; }
105
+ }
106
+
107
+ .loading {
108
+ animation: pulse 1.5s infinite;
109
+ }
110
+ </style>
111
+ """, unsafe_allow_html=True)
112
+
113
+ def enhance_image(image):
114
+ """
115
+ Basic image enhancement with default settings
116
+ """
117
+ enhancer = ImageEnhance.Brightness(image)
118
+ image = enhancer.enhance(1.0)
119
+ enhancer = ImageEnhance.Contrast(image)
120
+ image = enhancer.enhance(1.0)
121
+ enhancer = ImageEnhance.Sharpness(image)
122
+ image = enhancer.enhance(1.0)
123
+ return image
124
+
125
+ def compare_images(img1, img2, progress_bar):
126
+ """
127
+ Compare two images and return the processed image, similarity score, and difference percentage
128
+ """
129
+ try:
130
+ progress_bar.progress(0)
131
+
132
+ # Convert images to numpy arrays and ensure same size
133
+ img1 = np.array(img1.resize(img2.size))
134
+ img2 = np.array(img2)
135
+ progress_bar.progress(20)
136
+
137
+ # Normalize images
138
+ img1 = cv2.normalize(img1, None, 0, 255, cv2.NORM_MINMAX)
139
+ img2 = cv2.normalize(img2, None, 0, 255, cv2.NORM_MINMAX)
140
+
141
+ # Convert to grayscale
142
+ gray1 = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY)
143
+ gray2 = cv2.cvtColor(img2, cv2.COLOR_RGB2GRAY)
144
+ progress_bar.progress(40)
145
+
146
+ # Calculate SSIM
147
+ score, diff = ssim(gray1, gray2, full=True)
148
+ progress_bar.progress(60)
149
+
150
+ # Generate heatmap
151
+ diff = (diff * 255).astype(np.uint8)
152
+ heatmap = cv2.applyColorMap(diff, cv2.COLORMAP_JET)
153
+ progress_bar.progress(80)
154
+
155
+ # Highlight differences in red color
156
+ diff_mask = cv2.absdiff(gray1, gray2)
157
+ diff_mask = cv2.cvtColor(diff_mask, cv2.COLOR_GRAY2RGB)
158
+ diff_mask[np.where((diff_mask == [255, 255, 255]).all(axis=2))] = [0, 0, 255] # Red color for differences
159
+
160
+ # Combine original image with difference mask
161
+ result_img = cv2.addWeighted(img1, 0.7, diff_mask, 0.3, 0)
162
+
163
+ # Calculate pixel-wise differences
164
+ diff_percentage = (np.count_nonzero(diff_mask[:, :, 2] > 0) / (diff_mask.shape[0] * diff_mask.shape[1])) * 100
165
+
166
+ # Ensure that the difference percentage is consistent with the similarity score
167
+ diff_percentage = 100 - (score * 100)
168
+
169
+ progress_bar.progress(100)
170
+
171
+ return result_img, score, diff_percentage, heatmap
172
+
173
+ except Exception as e:
174
+ st.error(f"Error comparing images: {str(e)}")
175
+ return None, 0, 0, None
176
+
177
+ def detect_objects(image, model):
178
+ """
179
+ Perform object detection on the image using YOLOv5
180
+ """
181
+ try:
182
+ results = model(image)
183
+ results_df = results.pandas().xyxy[0]
184
+ return results_df
185
+ except Exception as e:
186
+ st.error(f"Error in object detection: {str(e)}")
187
+ return None
188
+
189
+ def draw_object_boxes(image, objects_df):
190
+ """
191
+ Draw bounding boxes on the image for detected objects
192
+ """
193
+ for _, row in objects_df.iterrows():
194
+ xmin, ymin, xmax, ymax, confidence, class_name = int(row['xmin']), int(row['ymin']), int(row['xmax']), int(row['ymax']), row['confidence'], row['name']
195
+ # Draw bounding box
196
+ cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
197
+ # Add label
198
+ cv2.putText(image, f"{class_name} {confidence:.2f}", (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
199
+ return image
200
+
201
+ def main():
202
+ load_css()
203
+
204
+ # Initialize session state for results
205
+ if "results" not in st.session_state:
206
+ st.session_state.results = None
207
+
208
+ # Load YOLOv5 model
209
+ yolo_model = load_yolo_model()
210
+
211
+ # App header
212
+ st.markdown("""
213
+ <div style='text-align: center; margin-bottom: 2rem; background: linear-gradient(135deg, #2196F3 0%, #1976D2 100%); padding: 2rem; border-radius: 15px; color: white;'>
214
+ <h1 style='margin: 0;'>πŸ” Image Comparison Tool</h1>
215
+ <p style='margin: 1rem 0 0 0; opacity: 0.9;'>Compare images, highlight differences, and detect objects</p>
216
+ </div>
217
+ """, unsafe_allow_html=True)
218
+
219
+ # Main content for image upload and display
220
+ st.markdown("<div class='upload-container'>", unsafe_allow_html=True)
221
+ st.markdown("### πŸ“ Upload Images")
222
+
223
+ col1, col2 = st.columns(2)
224
+
225
+ # Reference Image Upload
226
+ with col1:
227
+ reference_image = st.file_uploader(
228
+ "Drop or select reference image",
229
+ type=["jpg", "jpeg", "png"],
230
+ key="reference"
231
+ )
232
+ if reference_image:
233
+ img1 = Image.open(reference_image)
234
+ img1 = enhance_image(img1)
235
+ st.image(img1, caption="Reference Image", use_column_width=True)
236
+ # Clear previous results when a new image is uploaded
237
+ st.session_state.results = None
238
+
239
+ # New Image Upload
240
+ with col2:
241
+ new_image = st.file_uploader(
242
+ "Drop or select comparison image",
243
+ type=["jpg", "jpeg", "png"],
244
+ key="new"
245
+ )
246
+ if new_image:
247
+ img2 = Image.open(new_image)
248
+ img2 = enhance_image(img2)
249
+ st.image(img2, caption="Comparison Image", use_column_width=True)
250
+ # Clear previous results when a new image is uploaded
251
+ st.session_state.results = None
252
+
253
+ st.markdown("</div>", unsafe_allow_html=True)
254
+
255
+ # Sidebar for results and download
256
+ st.sidebar.markdown("### 🎯 Analysis Results")
257
+
258
+ if reference_image and new_image:
259
+ compare_button = st.sidebar.button("πŸ” Analyze Images", use_container_width=True)
260
+
261
+ if compare_button or st.session_state.results:
262
+ if not st.session_state.results:
263
+ with st.spinner("Processing images..."):
264
+ progress_bar = st.sidebar.progress(0)
265
+
266
+ start_time = time.time()
267
+ result_img, score, diff_percentage, heatmap = compare_images(img1, img2, progress_bar)
268
+ processing_time = time.time() - start_time
269
+
270
+ # Perform object detection
271
+ objects_df = detect_objects(result_img, yolo_model)
272
+
273
+ # Draw bounding boxes on the analyzed image
274
+ if objects_df is not None:
275
+ result_img = draw_object_boxes(result_img, objects_df)
276
+
277
+ # Store results in session state
278
+ st.session_state.results = {
279
+ "result_img": result_img,
280
+ "heatmap": heatmap,
281
+ "score": score,
282
+ "diff_percentage": diff_percentage,
283
+ "processing_time": processing_time,
284
+ "objects_df": objects_df
285
+ }
286
+
287
+ # Display analyzed image (processed image with differences highlighted) in sidebar
288
+ st.sidebar.image(st.session_state.results["result_img"], caption="Analyzed Image (Differences Highlighted)", use_column_width=True)
289
+
290
+ # Display heatmap in sidebar
291
+ st.sidebar.image(st.session_state.results["heatmap"], caption="Heatmap", use_column_width=True)
292
+
293
+ # Display metrics in sidebar
294
+ st.sidebar.markdown("### πŸ“Š Metrics")
295
+ st.sidebar.markdown(f"""
296
+ <div class='metric-card'>
297
+ <h4>Similarity Score</h4>
298
+ <h2 style='color: #2196F3'>{st.session_state.results["score"]:.2%}</h2>
299
+ </div>
300
+ """, unsafe_allow_html=True)
301
+
302
+ st.sidebar.markdown(f"""
303
+ <div class='metric-card'>
304
+ <h4>Difference Detected</h4>
305
+ <h2 style='color: #2196F3'>{st.session_state.results["diff_percentage"]:.2f}%</h2>
306
+ </div>
307
+ """, unsafe_allow_html=True)
308
+
309
+ st.sidebar.markdown(f"""
310
+ <div class='metric-card'>
311
+ <h4>Processing Time</h4>
312
+ <h2 style='color: #2196F3'>{st.session_state.results["processing_time"]:.2f}s</h2>
313
+ </div>
314
+ """, unsafe_allow_html=True)
315
+
316
+ # Display detected objects
317
+ if st.session_state.results["objects_df"] is not None:
318
+ st.sidebar.markdown("### πŸ” Detected Objects")
319
+ st.sidebar.dataframe(st.session_state.results["objects_df"])
320
+
321
+ # Download analyzed image
322
+ st.sidebar.markdown("### πŸ“₯ Download Analyzed Image")
323
+ st.sidebar.download_button(
324
+ "Download Analyzed Image",
325
+ data=cv2.imencode('.png', cv2.cvtColor(st.session_state.results["result_img"], cv2.COLOR_RGB2BGR))[1].tobytes(),
326
+ file_name=f"analyzed_image_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png",
327
+ mime="image/png"
328
+ )
329
+
330
+ # Footer
331
+ st.markdown("""
332
+ <div style='text-align: center; margin-top: 2rem; padding: 1rem; background: #2d2d2d; border-radius: 10px; box-shadow: 0 4px 6px rgba(0,0,0,0.2);'>
333
+ <p style='color: #888; margin: 0;'>Built with ❀️ using Streamlit | Last updated: December 2024</p>
334
+ <p style='color: #888; font-size: 0.9em; margin: 0.5rem 0 0 0;'>Image Comparison Tool v1.0</p>
335
+ </div>
336
+ """, unsafe_allow_html=True)
337
+
338
+ if __name__ == "__main__":
339
+ main()