Spaces:
Runtime error
Runtime error
Commit
·
82df4eb
1
Parent(s):
d116d67
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pip install -qU cassio datasets langchain openai tiktoken
|
2 |
+
|
3 |
+
# LangChain components to use
|
4 |
+
from langchain.vectorstores.cassandra import Cassandra
|
5 |
+
from langchain.indexes.vectorstore import VectorStoreIndexWrapper
|
6 |
+
from langchain.llms import OpenAI
|
7 |
+
from langchain.embeddings import OpenAIEmbeddings
|
8 |
+
|
9 |
+
# Support for dataset retrieval with Hugging Face
|
10 |
+
from datasets import load_dataset
|
11 |
+
|
12 |
+
# With CassIO, the engine powering the Astra DB integration in LangChain,
|
13 |
+
# you will also initialize the DB connection:
|
14 |
+
import cassio
|
15 |
+
|
16 |
+
pip install PyPDF2
|
17 |
+
|
18 |
+
from PyPDF2 import PdfReader
|
19 |
+
|
20 |
+
ASTRA_DB_APPLICATION_TOKEN = "AstraCS:OsOjMKLLxkWFoUpmNbWeJwIP:d8b4df7fd17c288edd265f9d167fa821e97e9d97098842c2e3ed4140d756d02d"
|
21 |
+
ASTRA_DB_ID = "f97bbcce-b48b-4b42-8ad0-fdc38b2e165e" # enter your Database ID
|
22 |
+
OPENAI_API_KEY = "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" # enter your OpenAI key
|
23 |
+
|
24 |
+
# provide the path of pdf file/files.
|
25 |
+
pdfreader = PdfReader('Ethics.pdf')
|
26 |
+
|
27 |
+
from typing_extensions import Concatenate
|
28 |
+
# read text from pdf
|
29 |
+
raw_text = ''
|
30 |
+
for i, page in enumerate(pdfreader.pages):
|
31 |
+
content = page.extract_text()
|
32 |
+
if content:
|
33 |
+
raw_text += content
|
34 |
+
|
35 |
+
|
36 |
+
cassio.init(token=ASTRA_DB_APPLICATION_TOKEN, database_id=ASTRA_DB_ID)
|
37 |
+
|
38 |
+
llm = OpenAI(openai_api_key=OPENAI_API_KEY)
|
39 |
+
embedding = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
|
40 |
+
|
41 |
+
astra_vector_store = Cassandra(
|
42 |
+
embedding=embedding,
|
43 |
+
table_name="qa_mini_demo",
|
44 |
+
session=None,
|
45 |
+
keyspace=None,
|
46 |
+
)
|
47 |
+
|
48 |
+
|
49 |
+
from langchain.text_splitter import CharacterTextSplitter
|
50 |
+
# We need to split the text using Character Text Split such that it sshould not increse token size
|
51 |
+
text_splitter = CharacterTextSplitter(
|
52 |
+
separator = "\n",
|
53 |
+
chunk_size = 800,
|
54 |
+
chunk_overlap = 200,
|
55 |
+
length_function = len,
|
56 |
+
)
|
57 |
+
texts = text_splitter.split_text(raw_text)
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
astra_vector_store.add_texts(texts[:])
|
62 |
+
|
63 |
+
print("Inserted %i headlines." % len(texts[:]))
|
64 |
+
|
65 |
+
astra_vector_index = VectorStoreIndexWrapper(vectorstore=astra_vector_store)
|
66 |
+
|
67 |
+
first_question = True
|
68 |
+
while True:
|
69 |
+
if first_question:
|
70 |
+
query_text = input("\nEnter your question (or type 'quit' to exit): ").strip()
|
71 |
+
else:
|
72 |
+
query_text = input("\nWhat's your next question (or type 'quit' to exit): ").strip()
|
73 |
+
|
74 |
+
if query_text.lower() == "quit":
|
75 |
+
break
|
76 |
+
|
77 |
+
if query_text == "":
|
78 |
+
continue
|
79 |
+
|
80 |
+
first_question = False
|
81 |
+
|
82 |
+
print("\nQUESTION: \"%s\"" % query_text)
|
83 |
+
answer = astra_vector_index.query(query_text, llm=llm).strip()
|
84 |
+
print("ANSWER: \"%s\"\n" % answer)
|