|
import gradio as gr |
|
from rag import RAG, ServiceContextModule |
|
from llama_index.core import set_global_service_context |
|
import json |
|
from prompts import general_prompt |
|
from gradio_pdf import PDF |
|
import requests |
|
|
|
service_context_module = None |
|
current_model = None |
|
|
|
|
|
def initialize(api_key, model_name): |
|
global service_context_module, current_model |
|
gr.Info("Initializing app") |
|
url = "https://api.groq.com/openai/v1/models" |
|
headers = { |
|
"Authorization": f"Bearer {api_key}", |
|
"Content-Type": "application/json", |
|
} |
|
try: |
|
response = requests.get(url, headers=headers) |
|
data = response.json() |
|
models = [model["id"] for model in data["data"]] |
|
|
|
except Exception: |
|
gr.Error("Invalid API KEY") |
|
return gr.update(choices=[]) |
|
|
|
if not service_context_module or current_model != model_name: |
|
try: |
|
service_context_module = ServiceContextModule(api_key, model_name) |
|
except Exception as e: |
|
print(e) |
|
current_model = model_name |
|
gr.Info("App started") |
|
set_global_service_context( |
|
service_context=service_context_module.service_context |
|
) |
|
else: |
|
gr.Info("App is already running") |
|
|
|
return gr.update(choices=models) |
|
|
|
|
|
def process_document(file, query): |
|
if file.endswith(".pdf"): |
|
return process_pdf(file, query=query) |
|
else: |
|
return "Unsupported file format" |
|
|
|
|
|
def postprocess_json_string(json_string: str) -> dict: |
|
json_string = json_string.replace("'", '"') |
|
json_string = json_string[json_string.rfind("{") : json_string.rfind("}") + 1] |
|
try: |
|
json_data = json.loads(json_string) |
|
except Exception as e: |
|
print("Error parsing output, invalid json format", e) |
|
return json_data |
|
|
|
|
|
def process_pdf(file, query): |
|
rag_module = RAG(filepaths=[file]) |
|
fields = [field for field in query.split(",")] |
|
formatted_prompt = general_prompt(fields=fields) |
|
response = rag_module.run_query_engine(prompt=formatted_prompt) |
|
extracted_json = postprocess_json_string(json_string=response) |
|
return extracted_json |
|
|
|
|
|
with gr.Blocks(title="Document Information Extractor.") as app: |
|
gr.Markdown( |
|
value=""" |
|
# Welcome to Document Information Extractor. |
|
Created by [@rajsinghparihar](https://huggingface.co/rajsinghparihar) for extracting useful information from pdf documents like invoices, salary slips, etc. |
|
## Usage: |
|
- In the Init Section, Enter your `GROQ_API_KEY` in the corresponding labeled textbox. |
|
- choose the model from the list of available models. |
|
- click `Initialize` to start the app. |
|
|
|
- In the app section, you can upload a document (pdf files: currently works for readable pdfs only, will add ocr functionality later) |
|
- Enter the entities you wanna extract as a comma seperated string. (check the examples for more info) |
|
- Click Submit to see the extracted entities as a JSON object. |
|
""" |
|
) |
|
with gr.Tab(label="Init Section") as init_tab: |
|
with gr.Row(): |
|
api_key = gr.Text( |
|
label="Enter your Groq API KEY", |
|
type="password", |
|
) |
|
available_models = gr.Dropdown( |
|
value="llama3-70b-8192", |
|
label="Choose your LLM", |
|
choices=[ |
|
"gemma-7b-it", |
|
"llama3-70b-8192", |
|
"llama3-8b-8192", |
|
"mixtral-8x7b-32768", |
|
"whisper-large-v3", |
|
], |
|
) |
|
init_btn = gr.Button(value="Initialize") |
|
init_btn.click( |
|
fn=initialize, |
|
inputs=[api_key, available_models], |
|
outputs=available_models, |
|
) |
|
with gr.Tab(label="App Section") as app_tab: |
|
iface = gr.Interface( |
|
fn=process_document, |
|
inputs=[ |
|
PDF(label="Document"), |
|
gr.Text( |
|
label="Entities you wanna extract in comma separated string format" |
|
), |
|
], |
|
outputs=gr.JSON(label="Extracted Entities"), |
|
description="Upload a PDF document and extract specified entities from it.", |
|
examples=[ |
|
[ |
|
"examples/Commerce Bank Statement Sample.pdf", |
|
"Customer Name, Account Number, Statement Date, Ending Balance, Total Deposits, Checks Paid", |
|
], |
|
[ |
|
"examples/Salary-Slip-pdf.pdf", |
|
"Employee Name, Bank Name, Location, Total Salary, Total Deductions", |
|
], |
|
], |
|
cache_examples="lazy", |
|
) |
|
gr.Markdown(""" |
|
## Pros of LLMs as information extractors over current extraction solutions: |
|
- LLMs are able to understand the scope of the problem from the context and are more robust to typos or extraction failure |
|
|
|
## Cons |
|
- Higher Inference Cost |
|
- Can't use free APIs for Sensitive documents. |
|
""") |
|
|
|
app.launch(server_name="0.0.0.0", server_port=7860) |
|
|