rama0519 commited on
Commit
121745d
·
verified ·
1 Parent(s): f5a3c6c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -4
app.py CHANGED
@@ -1,12 +1,17 @@
1
  #!pip install gradio --upgrade # Upgrade to the latest version of Gradio
 
2
 
3
  import gradio as gr
4
  import pandas as pd
5
  import joblib
6
  from huggingface_hub import hf_hub_download
 
7
 
8
- # Your Hugging Face token
9
- token = "token"
 
 
 
10
 
11
  # Download the model and scaler from the Hugging Face Hub using the token
12
  model_path = hf_hub_download(repo_id="rama0519/DiabeticLogistic123", filename="logistic_regression_model.joblib", use_auth_token=token)
@@ -53,7 +58,6 @@ def predict_diabetes(pregnancies, glucose, blood_pressure, skin_thickness, insul
53
  return prediction_text
54
 
55
  # Create the Gradio interface
56
- # Use gr.Slider to allow for setting min and max values
57
  interface = gr.Interface(
58
  fn=predict_diabetes,
59
  inputs=[
@@ -72,4 +76,4 @@ interface = gr.Interface(
72
  )
73
 
74
  # Launch the interface
75
- interface.launch()
 
1
  #!pip install gradio --upgrade # Upgrade to the latest version of Gradio
2
+ #!pip install huggingface_hub joblib
3
 
4
  import gradio as gr
5
  import pandas as pd
6
  import joblib
7
  from huggingface_hub import hf_hub_download
8
+ import os
9
 
10
+ # Load the Hugging Face token from the environment variable
11
+ token = os.getenv("HF_TOKEN")
12
+
13
+ if token is None:
14
+ raise ValueError("Hugging Face token not found. Please set the 'HF_TOKEN' environment variable.")
15
 
16
  # Download the model and scaler from the Hugging Face Hub using the token
17
  model_path = hf_hub_download(repo_id="rama0519/DiabeticLogistic123", filename="logistic_regression_model.joblib", use_auth_token=token)
 
58
  return prediction_text
59
 
60
  # Create the Gradio interface
 
61
  interface = gr.Interface(
62
  fn=predict_diabetes,
63
  inputs=[
 
76
  )
77
 
78
  # Launch the interface
79
+ interface.launch()