File size: 2,838 Bytes
cd650c7
 
a26857e
cd650c7
923f75f
 
 
 
112c42e
beb08e3
 
 
 
 
 
cd650c7
a26857e
 
 
112c42e
 
 
 
cd650c7
112c42e
 
 
 
 
 
 
 
cd650c7
beb08e3
a26857e
 
43561b8
beb08e3
a26857e
 
7bc64c3
a26857e
 
 
 
 
 
 
 
 
 
 
cd650c7
 
fceacf5
112c42e
fceacf5
 
 
923f75f
112c42e
 
 
 
 
923f75f
112c42e
923f75f
112c42e
 
 
 
 
 
923f75f
112c42e
923f75f
112c42e
 
 
 
 
 
923f75f
112c42e
923f75f
112c42e
 
 
 
 
 
923f75f
112c42e
 
a26857e
cd650c7
 
112c42e
cd650c7
112c42e
 
923f75f
12b3267
beb08e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from huggingface_hub import InferenceClient
import gradio as gr
import PyPDF2

client = InferenceClient(
    "mistralai/Mixtral-8x7B-Instruct-v0.1"
)

def format_prompt(message, history):
    prompt = "<s>"
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

def generate(
    prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, file=None
):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    if file:
        text = extract_text_from_pdf(file)
        prompt = text

    formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output

def extract_text_from_pdf(file):
    pdf_reader = PyPDF2.PdfReader(file)
    text = ""
    for page in range(len(pdf_reader.pages)):
        text += pdf_reader.pages[page].extract_text()
    return text

additional_inputs=[
    gr.Textbox(
        label="System Prompt",
        max_lines=1,
        interactive=True,
    ),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=256,
        minimum=0,
        maximum=5120,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    ),
    gr.File(label="Upload PDF File", file_count="single", file_types=[".pdf"]),
]

gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
    additional_inputs=additional_inputs,
    title="Synthetic-data-generation-aze",
    concurrency_limit=20, 
).launch(show_api=False)