File size: 3,588 Bytes
cd650c7 fceacf5 cd650c7 923f75f cd650c7 fceacf5 cd650c7 923f75f cd650c7 43561b8 923f75f fceacf5 923f75f cd650c7 923f75f fceacf5 923f75f cd650c7 923f75f 43561b8 923f75f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
from huggingface_hub import InferenceClient
import gradio as gr
import re
from nltk.tokenize import sent_tokenize
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def tokenize_sentences(file_content):
sentences = sent_tokenize(file_content.decode())
return sentences
def generate_synthetic_data(prompt, sentences):
synthetic_data = []
for sentence in sentences:
# Apply the prompt instructions to generate synthetic data from the sentence
synthetic_sentence = f"{prompt}: {sentence}"
synthetic_data.append(synthetic_sentence)
return "\n".join(synthetic_data)
def generate(
prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, files=None
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
if files is not None:
file_contents = [file.decode() for file in files]
sentences = []
for content in file_contents:
sentences.extend(tokenize_sentences(content))
synthetic_data = generate_synthetic_data(prompt, sentences)
formatted_prompt += f"\n\nSynthetic data: {synthetic_data}"
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Textbox(
label="System Prompt",
max_lines=1,
interactive=True,
),
gr.Textbox(
label="Prompt for Synthetic Data Generation",
max_lines=1,
interactive=True,
),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=5120,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
),
gr.File(
label="Upload PDF or Document",
file_count="multiple",
file_types=[".pdf", ".doc", ".docx", ".txt"],
interactive=True,
)
]
gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
additional_inputs=additional_inputs,
title="Synthetic-data-generation-aze",
concurrency_limit=20,
).launch(show_api=False) |