data_gen / app.py
ramalMr's picture
Update app.py
34421df verified
raw
history blame
3.41 kB
from huggingface_hub import InferenceClient
import gradio as gr
import PyPDF2
import random
import pandas as pd
from io import BytesIO
import csv
import os
import io
import tempfile
# Initialize the inference client with your chosen model
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def extract_text_from_pdf(file):
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page in range(len(pdf_reader.pages)):
text += pdf_reader.pages[page].extract_text()
return text
def save_to_csv(sentence, output, filename="synthetic_data.csv"):
with open(filename, mode='a', newline='', encoding='utf-8') as file:
writer = csv.writer(file)
writer.writerow([sentence, output])
def generate(file, temperature, max_new_tokens, top_p, repetition_penalty):
text = extract_text_from_pdf(file)
sentences = text.split('.')
random.shuffle(sentences) # Shuffle sentences
# CSV dosyası için başlık
if not os.path.exists("synthetic_data.csv"):
with open("synthetic_data.csv", mode='w', newline='', encoding='utf-8') as file:
writer = csv.writer(file)
writer.writerow(["Original Sentence", "Synthetic Data"])
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
generate_kwargs = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"do_sample": True,
"seed": 42,
}
try:
stream = client.text_generation(sentence, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
save_to_csv(sentence, output)
except Exception as e:
print(f"Error generating data for sentence '{sentence}': {e}")
save_to_csv(sentence, f"Error: {e}")
# CSV dosyasını okuyup byte olarak döndür
with open("synthetic_data.csv", "r", encoding="utf-8") as file:
csv_content = file.read()
csv_bytes = csv_content.encode()
# Geçici dosya oluştur ve içeriği yaz
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
tmp.write(csv_bytes)
tmp_path = tmp.name
return tmp_path
gr.Interface(
fn=generate,
inputs=[
gr.File(label="Upload PDF File", file_count="single", file_types=[".pdf"]),
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
],
outputs=gr.File(label="Synthetic Data CSV"),
title="Synthetic Data Generation",
description="This tool generates synthetic data from the sentences in your PDF and saves it to a CSV file.",
allow_flagging="never",
).launch()