data_gen / app.py
ramalMr's picture
Update app.py
4cab160 verified
raw
history blame
2.91 kB
from huggingface_hub import InferenceClient
import gradio as gr
import random
import pandas as pd
from io import BytesIO
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def extract_text_from_excel(file):
df = pd.read_excel(file)
text = ' '.join(df['data'].astype(str))
return text
def generate_sentences(text, temperature, max_new_tokens, top_p, repetition_penalty):
sentences = text.split('.')
random.shuffle(sentences) # Shuffle sentences
generated_data = []
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
generate_kwargs = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"do_sample": True,
"seed": 42,
}
try:
stream = client.text_generation(sentence, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
generated_sentences = [s.strip() for s in output.split('.') if s.strip()]
generated_data.extend([(sentence, generated_sentence) for generated_sentence in generated_sentences])
except Exception as e:
print(f"Error generating data for sentence '{sentence}': {e}")
return generated_data
def save_to_csv(data, filename="synthetic_data.csv"):
with open(filename, mode='w', newline='', encoding='utf-8') as file:
writer = csv.writer(file)
writer.writerow(['Original Sentence', 'Generated Sentence'])
writer.writerows(data)
def generate(file, temperature, max_new_tokens, top_p, repetition_penalty):
text = extract_text_from_excel(file)
data = generate_sentences(text, temperature, max_new_tokens, top_p, repetition_penalty)
save_to_csv(data)
return gr.File.update(value=filename, visible=True)
gr.Interface(
fn=generate,
inputs=[
gr.File(label="Upload Excel File", file_count="single", file_types=[".xlsx"]),
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
],
outputs=gr.File(label="Synthetic Data"),
title="SDG",
description="AYE QABIL.",
allow_flagging="never",
).launch()