|
from huggingface_hub import InferenceClient |
|
import gradio as gr |
|
import pandas as pd |
|
|
|
|
|
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") |
|
|
|
|
|
def format_prompt(message, history): |
|
prompt = "<s>" |
|
for user_prompt, bot_response in history: |
|
prompt += f"[INST] {user_prompt} [/INST]" |
|
prompt += f" {bot_response}</s> " |
|
prompt += f"[INST] {message} [/INST]" |
|
return prompt |
|
|
|
|
|
def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): |
|
temperature = float(temperature) |
|
if temperature < 1e-2: |
|
temperature = 1e-2 |
|
top_p = float(top_p) |
|
|
|
generate_kwargs = dict( |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
seed=42, |
|
) |
|
|
|
|
|
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) |
|
|
|
|
|
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
|
|
for response in stream: |
|
output += response.token.text |
|
yield output |
|
return output |
|
|
|
|
|
additional_inputs=[ |
|
gr.File(label="Upload CSV or Document", type="binary"), |
|
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"), |
|
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"), |
|
gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"), |
|
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens") |
|
] |
|
|
|
|
|
def read_file(file): |
|
if file is None: |
|
return None |
|
elif file.name.endswith('.csv'): |
|
return pd.read_csv(file) |
|
elif file.name.endswith('.txt'): |
|
with open(file.name, 'r') as f: |
|
return f.read() |
|
|
|
|
|
gr.ChatInterface( |
|
fn=generate, |
|
inputs=[ |
|
gr.Textbox(label="Prompt"), |
|
gr.Textbox(label="History", placeholder="User1: Hello\nBot: Hi there!\nUser1: How are you?"), |
|
gr.Textbox(label="System Prompt"), |
|
gr.File(label="Upload CSV or Document", type="binary"), |
|
], |
|
outputs=gr.Textbox(label="Response"), |
|
title="Synthetic-data-generation-aze", |
|
additional_inputs=additional_inputs, |
|
examples=[ |
|
["What is the capital of France?", "Paris", "Ask me anything"], |
|
["How are you?", "I'm good, thank you!", "User"], |
|
], |
|
allow_flagging=False, |
|
allow_upvoting=False, |
|
allow_duplicate_of_same_input=False, |
|
flagging_options=["Inappropriate", "Incorrect", "Offensive"], |
|
thumbs=None, |
|
).launch() |
|
|
|
|