data_gen / app.py
ramalMr's picture
Update app.py
7b026a2 verified
raw
history blame
3.1 kB
from huggingface_hub import InferenceClient
import pandas as pd
import re
import random
import csv
import tempfile
import gradio as gr
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def extract_sentences_from_excel(file):
df = pd.read_excel(file)
sentences = []
for row in df.values.tolist():
text = ' '.join(str(x) for x in row)
new_sentences = re.split(r'(?<=[^.!?])(?=[.!?])', text)
sentences.extend([s.strip() for s in new_sentences if s.strip()])
return sentences
def generate_synthetic_data(file, temperature, max_new_tokens, top_p, repetition_penalty):
sentences = extract_sentences_from_excel(file)
random.shuffle(sentences)
generated_data = []
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
generate_kwargs = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"do_sample": True,
"seed": 42,
}
try:
output = client.generate(sentence, **generate_kwargs, return_full_text=True)
synthetic_data = output.text.strip()
generated_sentences = re.split(r'(?<=[\.\!\?:])[\s\n]+', synthetic_data)
generated_sentences = [s.strip() for s in generated_sentences if s.strip() and s != '.']
for generated_sentence in generated_sentences:
generated_data.append({'Original Sentence': sentence, 'Synthetic Data': generated_sentence})
except Exception as e:
print(f"Error generating data for sentence '{sentence}': {e}")
with tempfile.NamedTemporaryFile(mode='w', newline='', delete=False, suffix='.csv') as tmp:
fieldnames = ['Original Sentence', 'Synthetic Data']
writer = csv.DictWriter(tmp, fieldnames=fieldnames)
writer.writeheader()
for data in generated_data:
writer.writerow(data)
tmp_path = tmp.name
return tmp_path
gr.Interface(
fn=generate_synthetic_data,
inputs=[
gr.File(label="Upload Excel File", file_count="single", file_types=[".xlsx", ".xls"]),
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
],
outputs=gr.File(label="Synthetic Data CSV"),
title="Synthetic Data Generation",
description="Generate synthetic data from sentences in an Excel file and save it to a CSV file.",
allow_flagging="never",
).launch()