|
from huggingface_hub import InferenceClient |
|
import pandas as pd |
|
import re |
|
import random |
|
import csv |
|
import tempfile |
|
import gradio as gr |
|
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") |
|
|
|
def extract_sentences_from_excel(file): |
|
df = pd.read_excel(file) |
|
sentences = [] |
|
for row in df.values.tolist(): |
|
text = ' '.join(str(x) for x in row) |
|
new_sentences = re.split(r'(?<=[^.!?])(?=[.!?])', text) |
|
sentences.extend([s.strip() for s in new_sentences if s.strip()]) |
|
return sentences |
|
|
|
def generate_synthetic_data(file, temperature, max_new_tokens, top_p, repetition_penalty): |
|
sentences = extract_sentences_from_excel(file) |
|
random.shuffle(sentences) |
|
|
|
generated_data = [] |
|
|
|
for sentence in sentences: |
|
sentence = sentence.strip() |
|
if not sentence: |
|
continue |
|
|
|
generate_kwargs = { |
|
"temperature": temperature, |
|
"max_new_tokens": max_new_tokens, |
|
"top_p": top_p, |
|
"repetition_penalty": repetition_penalty, |
|
"do_sample": True, |
|
"seed": 42, |
|
} |
|
|
|
try: |
|
output = client.generate(sentence, **generate_kwargs, return_full_text=True) |
|
synthetic_data = output.text.strip() |
|
|
|
generated_sentences = re.split(r'(?<=[\.\!\?:])[\s\n]+', synthetic_data) |
|
generated_sentences = [s.strip() for s in generated_sentences if s.strip() and s != '.'] |
|
|
|
for generated_sentence in generated_sentences: |
|
generated_data.append({'Original Sentence': sentence, 'Synthetic Data': generated_sentence}) |
|
|
|
except Exception as e: |
|
print(f"Error generating data for sentence '{sentence}': {e}") |
|
|
|
with tempfile.NamedTemporaryFile(mode='w', newline='', delete=False, suffix='.csv') as tmp: |
|
fieldnames = ['Original Sentence', 'Synthetic Data'] |
|
writer = csv.DictWriter(tmp, fieldnames=fieldnames) |
|
writer.writeheader() |
|
|
|
for data in generated_data: |
|
writer.writerow(data) |
|
|
|
tmp_path = tmp.name |
|
|
|
return tmp_path |
|
|
|
gr.Interface( |
|
fn=generate_synthetic_data, |
|
inputs=[ |
|
gr.File(label="Upload Excel File", file_count="single", file_types=[".xlsx", ".xls"]), |
|
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"), |
|
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"), |
|
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"), |
|
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"), |
|
], |
|
outputs=gr.File(label="Synthetic Data CSV"), |
|
title="Synthetic Data Generation", |
|
description="Generate synthetic data from sentences in an Excel file and save it to a CSV file.", |
|
allow_flagging="never", |
|
).launch() |