Update app.py
Browse files
app.py
CHANGED
@@ -2,27 +2,19 @@ from huggingface_hub import InferenceClient
|
|
2 |
import gradio as gr
|
3 |
import random
|
4 |
import pandas as pd
|
5 |
-
from io import BytesIO
|
6 |
import csv
|
7 |
-
import os
|
8 |
-
import io
|
9 |
import tempfile
|
10 |
import re
|
11 |
|
12 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
13 |
|
14 |
-
def extract_text_from_excel(file):
|
15 |
df = pd.read_excel(file)
|
16 |
-
text = ' '.join(df[
|
17 |
return text
|
18 |
|
19 |
-
def
|
20 |
-
|
21 |
-
writer = csv.writer(file)
|
22 |
-
writer.writerow([sentence, output])
|
23 |
-
|
24 |
-
def generate(file, temperature, max_new_tokens, top_p, repetition_penalty, num_similar_sentences):
|
25 |
-
text = extract_text_from_excel(file)
|
26 |
sentences = text.split('.')
|
27 |
random.shuffle(sentences) # Shuffle sentences
|
28 |
|
@@ -46,10 +38,10 @@ def generate(file, temperature, max_new_tokens, top_p, repetition_penalty, num_s
|
|
46 |
}
|
47 |
|
48 |
try:
|
49 |
-
stream = client.text_generation(sentence, **generate_kwargs, stream=True,
|
50 |
output = ""
|
51 |
for response in stream:
|
52 |
-
output += response.
|
53 |
|
54 |
generated_sentences = re.split(r'(?<=[\.\!\?:])[\s\n]+', output)
|
55 |
generated_sentences = [s.strip() for s in generated_sentences if s.strip() and s != '.']
|
@@ -71,6 +63,7 @@ gr.Interface(
|
|
71 |
fn=generate,
|
72 |
inputs=[
|
73 |
gr.File(label="Upload Excel File", file_count="single", file_types=[".xlsx"]),
|
|
|
74 |
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
|
75 |
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
|
76 |
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
|
|
|
2 |
import gradio as gr
|
3 |
import random
|
4 |
import pandas as pd
|
|
|
5 |
import csv
|
|
|
|
|
6 |
import tempfile
|
7 |
import re
|
8 |
|
9 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
10 |
|
11 |
+
def extract_text_from_excel(file, column_name):
|
12 |
df = pd.read_excel(file)
|
13 |
+
text = ' '.join(df[column_name].astype(str))
|
14 |
return text
|
15 |
|
16 |
+
def generate(file, column_name, temperature, max_new_tokens, top_p, repetition_penalty, num_similar_sentences):
|
17 |
+
text = extract_text_from_excel(file, column_name)
|
|
|
|
|
|
|
|
|
|
|
18 |
sentences = text.split('.')
|
19 |
random.shuffle(sentences) # Shuffle sentences
|
20 |
|
|
|
38 |
}
|
39 |
|
40 |
try:
|
41 |
+
stream = client.text_generation(sentence, **generate_kwargs, stream=True, return_full_text=False)
|
42 |
output = ""
|
43 |
for response in stream:
|
44 |
+
output += response.text
|
45 |
|
46 |
generated_sentences = re.split(r'(?<=[\.\!\?:])[\s\n]+', output)
|
47 |
generated_sentences = [s.strip() for s in generated_sentences if s.strip() and s != '.']
|
|
|
63 |
fn=generate,
|
64 |
inputs=[
|
65 |
gr.File(label="Upload Excel File", file_count="single", file_types=[".xlsx"]),
|
66 |
+
gr.TextAreaInput(label="Column Name", placeholder="Enter the column name"),
|
67 |
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
|
68 |
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
|
69 |
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
|