Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import gradio as gr
|
|
3 |
import random
|
4 |
import pandas as pd
|
5 |
from io import BytesIO
|
6 |
-
import csv
|
7 |
import os
|
8 |
import io
|
9 |
import tempfile
|
@@ -11,23 +11,23 @@ import re
|
|
11 |
|
12 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
13 |
|
14 |
-
def
|
15 |
df = pd.read_excel(file)
|
16 |
-
text = ' '.join(df['
|
17 |
-
|
|
|
|
|
18 |
|
19 |
-
def save_to_csv(
|
20 |
with open(filename, mode='a', newline='', encoding='utf-8') as file:
|
21 |
writer = csv.writer(file)
|
22 |
-
writer.writerow([
|
23 |
|
24 |
-
def generate(file, prompt, temperature, max_new_tokens, top_p, repetition_penalty
|
25 |
-
|
26 |
-
sentences = text.split('.')
|
27 |
-
random.shuffle(sentences) # Shuffle sentences
|
28 |
|
29 |
with tempfile.NamedTemporaryFile(mode='w', newline='', delete=False, suffix='.csv') as tmp:
|
30 |
-
fieldnames = ['
|
31 |
writer = csv.DictWriter(tmp, fieldnames=fieldnames)
|
32 |
writer.writeheader()
|
33 |
|
@@ -46,7 +46,7 @@ def generate(file, prompt, temperature, max_new_tokens, top_p, repetition_penalt
|
|
46 |
}
|
47 |
|
48 |
try:
|
49 |
-
stream = client.text_generation(prompt
|
50 |
output = ""
|
51 |
for response in stream:
|
52 |
output += response.token.text
|
@@ -54,34 +54,27 @@ def generate(file, prompt, temperature, max_new_tokens, top_p, repetition_penalt
|
|
54 |
generated_sentences = re.split(r'(?<=[\.\!\?:])[\s\n]+', output)
|
55 |
generated_sentences = [s.strip() for s in generated_sentences if s.strip() and s != '.']
|
56 |
|
57 |
-
for
|
58 |
-
|
59 |
-
break
|
60 |
-
generated_sentence = generated_sentences.pop(random.randrange(len(generated_sentences)))
|
61 |
-
writer.writerow({'Prompt': prompt, 'Original Sentence': sentence, 'Generated Sentence': generated_sentence})
|
62 |
|
63 |
except Exception as e:
|
64 |
print(f"Error generating data for sentence '{sentence}': {e}")
|
65 |
|
66 |
tmp_path = tmp.name
|
67 |
|
68 |
-
return tmp_path
|
69 |
|
70 |
gr.Interface(
|
71 |
fn=generate,
|
72 |
inputs=[
|
73 |
gr.File(label="Upload Excel File", file_count="single", file_types=[".xlsx"]),
|
74 |
-
gr.Textbox(label="Prompt", placeholder="Enter your prompt here
|
75 |
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
|
76 |
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
|
77 |
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
|
78 |
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
|
79 |
-
gr.Slider(label="Number of similar sentences", value=10, minimum=1, maximum=20, step=1, interactive=True, info="Number of similar sentences to generate for each original sentence"),
|
80 |
-
],
|
81 |
-
outputs=[
|
82 |
-
gr.File(label="Synthetic Data"),
|
83 |
-
gr.Textbox(label="Generated Output")
|
84 |
],
|
|
|
85 |
title="SDG",
|
86 |
description="AYE QABIL.",
|
87 |
allow_flagging="never",
|
|
|
3 |
import random
|
4 |
import pandas as pd
|
5 |
from io import BytesIO
|
6 |
+
import csv
|
7 |
import os
|
8 |
import io
|
9 |
import tempfile
|
|
|
11 |
|
12 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
13 |
|
14 |
+
def extract_sentences_from_excel(file):
|
15 |
df = pd.read_excel(file)
|
16 |
+
text = ' '.join(df['Column_Name'].astype(str))
|
17 |
+
sentences = text.split('.')
|
18 |
+
sentences = [s.strip() for s in sentences if s.strip()]
|
19 |
+
return sentences
|
20 |
|
21 |
+
def save_to_csv(sentence, output, filename="synthetic_data.csv"):
|
22 |
with open(filename, mode='a', newline='', encoding='utf-8') as file:
|
23 |
writer = csv.writer(file)
|
24 |
+
writer.writerow([sentence, output])
|
25 |
|
26 |
+
def generate(file, prompt, temperature, max_new_tokens, top_p, repetition_penalty):
|
27 |
+
sentences = extract_sentences_from_excel(file)
|
|
|
|
|
28 |
|
29 |
with tempfile.NamedTemporaryFile(mode='w', newline='', delete=False, suffix='.csv') as tmp:
|
30 |
+
fieldnames = ['Original Sentence', 'Generated Sentence']
|
31 |
writer = csv.DictWriter(tmp, fieldnames=fieldnames)
|
32 |
writer.writeheader()
|
33 |
|
|
|
46 |
}
|
47 |
|
48 |
try:
|
49 |
+
stream = client.text_generation(f"{prompt} {sentence}", **generate_kwargs, stream=True, details=True, return_full_text=False)
|
50 |
output = ""
|
51 |
for response in stream:
|
52 |
output += response.token.text
|
|
|
54 |
generated_sentences = re.split(r'(?<=[\.\!\?:])[\s\n]+', output)
|
55 |
generated_sentences = [s.strip() for s in generated_sentences if s.strip() and s != '.']
|
56 |
|
57 |
+
for generated_sentence in generated_sentences:
|
58 |
+
writer.writerow({'Original Sentence': sentence, 'Generated Sentence': generated_sentence})
|
|
|
|
|
|
|
59 |
|
60 |
except Exception as e:
|
61 |
print(f"Error generating data for sentence '{sentence}': {e}")
|
62 |
|
63 |
tmp_path = tmp.name
|
64 |
|
65 |
+
return tmp_path
|
66 |
|
67 |
gr.Interface(
|
68 |
fn=generate,
|
69 |
inputs=[
|
70 |
gr.File(label="Upload Excel File", file_count="single", file_types=[".xlsx"]),
|
71 |
+
gr.Textbox(label="Prompt", placeholder="Enter your prompt here"),
|
72 |
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
|
73 |
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
|
74 |
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
|
75 |
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
|
|
|
|
|
|
|
|
|
|
|
76 |
],
|
77 |
+
outputs=gr.File(label="Synthetic Data "),
|
78 |
title="SDG",
|
79 |
description="AYE QABIL.",
|
80 |
allow_flagging="never",
|