Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,35 @@
|
|
1 |
from huggingface_hub import InferenceClient
|
2 |
import gradio as gr
|
3 |
-
import PyPDF2
|
4 |
-
import random
|
5 |
import pandas as pd
|
6 |
-
|
7 |
import csv
|
8 |
import os
|
9 |
-
import io
|
10 |
import tempfile
|
11 |
import re
|
12 |
|
13 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
14 |
|
15 |
-
def
|
16 |
-
|
17 |
-
|
18 |
-
for page in range(len(pdf_reader.pages)):
|
19 |
-
text += pdf_reader.pages[page].extract_text()
|
20 |
-
return text
|
21 |
|
22 |
def save_to_csv(sentence, output, filename="synthetic_data.csv"):
|
23 |
with open(filename, mode='a', newline='', encoding='utf-8') as file:
|
24 |
writer = csv.writer(file)
|
25 |
writer.writerow([sentence, output])
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
text = extract_text_from_pdf(file)
|
31 |
-
sentences = text.split('.')
|
32 |
random.shuffle(sentences) # Shuffle sentences
|
33 |
|
34 |
with tempfile.NamedTemporaryFile(mode='w', newline='', delete=False, suffix='.csv') as tmp:
|
35 |
fieldnames = ['Original Sentence', 'Generated Sentence']
|
36 |
writer = csv.DictWriter(tmp, fieldnames=fieldnames)
|
37 |
-
writer.writeheader()
|
38 |
|
39 |
-
for sentence in sentences:
|
40 |
sentence = sentence.strip()
|
41 |
if not sentence:
|
42 |
continue
|
@@ -68,16 +61,18 @@ def generate(file, temperature, max_new_tokens, top_p, repetition_penalty):
|
|
68 |
tmp_path = tmp.name
|
69 |
|
70 |
return tmp_path
|
71 |
-
|
|
|
72 |
fn=generate,
|
73 |
inputs=[
|
74 |
-
gr.File(label="Upload
|
75 |
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
|
76 |
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
|
77 |
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
|
78 |
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
|
|
|
79 |
],
|
80 |
-
outputs=gr.File(label="Synthetic Data
|
81 |
title="SDG",
|
82 |
description="AYE QABIL.",
|
83 |
allow_flagging="never",
|
|
|
1 |
from huggingface_hub import InferenceClient
|
2 |
import gradio as gr
|
|
|
|
|
3 |
import pandas as pd
|
4 |
+
import random
|
5 |
import csv
|
6 |
import os
|
7 |
+
import io
|
8 |
import tempfile
|
9 |
import re
|
10 |
|
11 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
12 |
|
13 |
+
def extract_data_from_excel(file):
|
14 |
+
df = pd.read_excel(file)
|
15 |
+
return df.values.tolist()
|
|
|
|
|
|
|
16 |
|
17 |
def save_to_csv(sentence, output, filename="synthetic_data.csv"):
|
18 |
with open(filename, mode='a', newline='', encoding='utf-8') as file:
|
19 |
writer = csv.writer(file)
|
20 |
writer.writerow([sentence, output])
|
21 |
|
22 |
+
def generate(file, temperature, max_new_tokens, top_p, repetition_penalty, num_sentences=10000):
|
23 |
+
data = extract_data_from_excel(file)
|
24 |
+
sentences = [str(row) for row in data] # Convert each row to a string
|
|
|
|
|
25 |
random.shuffle(sentences) # Shuffle sentences
|
26 |
|
27 |
with tempfile.NamedTemporaryFile(mode='w', newline='', delete=False, suffix='.csv') as tmp:
|
28 |
fieldnames = ['Original Sentence', 'Generated Sentence']
|
29 |
writer = csv.DictWriter(tmp, fieldnames=fieldnames)
|
30 |
+
writer.writeheader()
|
31 |
|
32 |
+
for sentence in sentences[:num_sentences]: # Process the first num_sentences sentences
|
33 |
sentence = sentence.strip()
|
34 |
if not sentence:
|
35 |
continue
|
|
|
61 |
tmp_path = tmp.name
|
62 |
|
63 |
return tmp_path
|
64 |
+
|
65 |
+
gr.Interface(
|
66 |
fn=generate,
|
67 |
inputs=[
|
68 |
+
gr.File(label="Upload Excel File", file_count="single", file_types=[".xlsx", ".xls"]),
|
69 |
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
|
70 |
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
|
71 |
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
|
72 |
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
|
73 |
+
gr.Slider(label="Number of sentences", value=10000, minimum=1, maximum=100000, step=1000, interactive=True, info="The number of sentences to generate"),
|
74 |
],
|
75 |
+
outputs=gr.File(label="Synthetic Data"),
|
76 |
title="SDG",
|
77 |
description="AYE QABIL.",
|
78 |
allow_flagging="never",
|