Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
from huggingface_hub import InferenceClient
|
2 |
import gradio as gr
|
3 |
import PyPDF2
|
|
|
|
|
|
|
4 |
|
5 |
-
client
|
6 |
-
|
7 |
-
)
|
8 |
|
9 |
def format_prompt(message, history):
|
10 |
prompt = "<s>"
|
@@ -14,13 +16,29 @@ def format_prompt(message, history):
|
|
14 |
prompt += f"[INST] {message} [/INST]"
|
15 |
return prompt
|
16 |
|
17 |
-
def
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
generate_kwargs = dict(
|
26 |
temperature=temperature,
|
@@ -31,75 +49,28 @@ def generate(
|
|
31 |
seed=42,
|
32 |
)
|
33 |
|
34 |
-
|
35 |
-
text = extract_text_from_pdf(file)
|
36 |
-
prompt = text
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
output += response.token.text
|
44 |
-
yield output
|
45 |
-
return output
|
46 |
-
|
47 |
-
def extract_text_from_pdf(file):
|
48 |
-
pdf_reader = PyPDF2.PdfReader(file)
|
49 |
-
text = ""
|
50 |
-
for page in range(len(pdf_reader.pages)):
|
51 |
-
text += pdf_reader.pages[page].extract_text()
|
52 |
-
return text
|
53 |
|
54 |
-
additional_inputs=[
|
55 |
-
gr.
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
),
|
60 |
-
gr.Slider(
|
61 |
-
label="Temperature",
|
62 |
-
value=0.9,
|
63 |
-
minimum=0.0,
|
64 |
-
maximum=1.0,
|
65 |
-
step=0.05,
|
66 |
-
interactive=True,
|
67 |
-
info="Higher values produce more diverse outputs",
|
68 |
-
),
|
69 |
-
gr.Slider(
|
70 |
-
label="Max new tokens",
|
71 |
-
value=256,
|
72 |
-
minimum=0,
|
73 |
-
maximum=5120,
|
74 |
-
step=64,
|
75 |
-
interactive=True,
|
76 |
-
info="The maximum numbers of new tokens",
|
77 |
-
),
|
78 |
-
gr.Slider(
|
79 |
-
label="Top-p (nucleus sampling)",
|
80 |
-
value=0.90,
|
81 |
-
minimum=0.0,
|
82 |
-
maximum=1,
|
83 |
-
step=0.05,
|
84 |
-
interactive=True,
|
85 |
-
info="Higher values sample more low-probability tokens",
|
86 |
-
),
|
87 |
-
gr.Slider(
|
88 |
-
label="Repetition penalty",
|
89 |
-
value=1.2,
|
90 |
-
minimum=1.0,
|
91 |
-
maximum=2.0,
|
92 |
-
step=0.05,
|
93 |
-
interactive=True,
|
94 |
-
info="Penalize repeated tokens",
|
95 |
-
),
|
96 |
gr.File(label="Upload PDF File", file_count="single", file_types=[".pdf"]),
|
97 |
]
|
98 |
|
99 |
-
gr.
|
100 |
fn=generate,
|
101 |
-
|
|
|
102 |
additional_inputs=additional_inputs,
|
103 |
-
title="Synthetic
|
104 |
-
|
105 |
-
|
|
|
|
1 |
from huggingface_hub import InferenceClient
|
2 |
import gradio as gr
|
3 |
import PyPDF2
|
4 |
+
import random
|
5 |
+
import pandas as pd
|
6 |
+
from io import StringIO
|
7 |
|
8 |
+
# Initialize the inference client with your chosen model
|
9 |
+
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
|
|
10 |
|
11 |
def format_prompt(message, history):
|
12 |
prompt = "<s>"
|
|
|
16 |
prompt += f"[INST] {message} [/INST]"
|
17 |
return prompt
|
18 |
|
19 |
+
def extract_text_from_pdf(file):
|
20 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
21 |
+
text = ""
|
22 |
+
for page in range(len(pdf_reader.pages)):
|
23 |
+
text += pdf_reader.pages[page].extract_text()
|
24 |
+
return text
|
25 |
+
|
26 |
+
def generate_synthetic_data(sentences, generate_kwargs):
|
27 |
+
synthetic_data = []
|
28 |
+
for sentence in sentences:
|
29 |
+
formatted_prompt = format_prompt(sentence, [])
|
30 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
31 |
+
output = ""
|
32 |
+
for response in stream:
|
33 |
+
output += response.token.text
|
34 |
+
synthetic_data.append(output)
|
35 |
+
return synthetic_data
|
36 |
+
|
37 |
+
def generate(file, system_prompt, temperature, max_new_tokens, top_p, repetition_penalty):
|
38 |
+
# Extract text and split into sentences
|
39 |
+
text = extract_text_from_pdf(file)
|
40 |
+
sentences = text.split('.')
|
41 |
+
random.shuffle(sentences) # Shuffle sentences
|
42 |
|
43 |
generate_kwargs = dict(
|
44 |
temperature=temperature,
|
|
|
49 |
seed=42,
|
50 |
)
|
51 |
|
52 |
+
synthetic_data = generate_synthetic_data(sentences, generate_kwargs)
|
|
|
|
|
53 |
|
54 |
+
# Convert synthetic data to CSV
|
55 |
+
df = pd.DataFrame(synthetic_data, columns=["Synthetic Data"])
|
56 |
+
csv_buffer = StringIO()
|
57 |
+
df.to_csv(csv_buffer, index=False)
|
58 |
+
return gr.File(value=csv_buffer.getvalue(), file_name="synthetic_data.csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
additional_inputs = [
|
61 |
+
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
|
62 |
+
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
|
63 |
+
gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
|
64 |
+
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
gr.File(label="Upload PDF File", file_count="single", file_types=[".pdf"]),
|
66 |
]
|
67 |
|
68 |
+
gr.Interface(
|
69 |
fn=generate,
|
70 |
+
inputs=[gr.File(label="Upload PDF File", file_count="single", file_types=[".pdf"]), "state", "number", "number", "number", "number"],
|
71 |
+
outputs="file",
|
72 |
additional_inputs=additional_inputs,
|
73 |
+
title="Synthetic Data Generation",
|
74 |
+
description="This tool generates synthetic data from the sentences in your PDF.",
|
75 |
+
allow_flagging="never",
|
76 |
+
).launch()
|