Update app.py
Browse files
app.py
CHANGED
@@ -2,83 +2,43 @@ from huggingface_hub import InferenceClient
|
|
2 |
import gradio as gr
|
3 |
import random
|
4 |
import pandas as pd
|
5 |
-
from io import BytesIO
|
6 |
import csv
|
7 |
import os
|
8 |
-
import io
|
9 |
import tempfile
|
10 |
import re
|
11 |
-
import streamlit as st
|
12 |
-
import torch
|
13 |
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
|
14 |
-
import time
|
15 |
-
import logging
|
16 |
-
|
17 |
-
if torch.cuda.is_available():
|
18 |
-
device = torch.device("cuda:0")
|
19 |
-
else:
|
20 |
-
device = torch.device("cpu")
|
21 |
-
logging.warning("GPU not found, using CPU, translation will be very slow.")
|
22 |
|
23 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
"Czech": "cs",
|
40 |
-
"Welsh": "cy",
|
41 |
-
"Danish": "da",
|
42 |
-
"German": "de",
|
43 |
-
"Greeek": "el",
|
44 |
-
"English": "en",
|
45 |
-
"Spanish": "es",
|
46 |
-
"Estonian": "et",
|
47 |
-
"Persian": "fa",
|
48 |
-
"Fulah": "ff",
|
49 |
-
"Finnish": "fi",
|
50 |
-
"French": "fr",
|
51 |
-
"Western Frisian": "fy",
|
52 |
-
"Irish": "ga",
|
53 |
-
"Gaelic": "gd",
|
54 |
-
"Galician": "gl",
|
55 |
-
"Gujarati": "gu",
|
56 |
-
"Hausa": "ha",
|
57 |
-
"Hebrew": "he",
|
58 |
-
"Hindi": "hi",
|
59 |
-
"Croatian": "hr",
|
60 |
-
"Haitian": "ht",
|
61 |
-
"Hungarian": "hu",
|
62 |
-
"Armenian": "hy",
|
63 |
-
"Indonesian": "id"
|
64 |
-
}
|
65 |
-
|
66 |
-
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
|
67 |
-
def load_model(pretrained_model: str = "facebook/m2m100_1.2B", cache_dir: str = "models/"):
|
68 |
-
tokenizer = M2M100Tokenizer.from_pretrained(pretrained_model, cache_dir=cache_dir)
|
69 |
-
model = M2M100ForConditionalGeneration.from_pretrained(pretrained_model, cache_dir=cache_dir).to(device)
|
70 |
-
model.eval()
|
71 |
-
return tokenizer, model
|
72 |
|
73 |
def extract_text_from_excel(file):
|
74 |
df = pd.read_excel(file)
|
75 |
text = ' '.join(df['Unnamed: 1'].astype(str))
|
76 |
-
|
|
|
|
|
77 |
|
78 |
def save_to_csv(sentence, output, filename="synthetic_data.csv"):
|
|
|
79 |
with open(filename, mode='a', newline='', encoding='utf-8') as file:
|
80 |
writer = csv.writer(file)
|
81 |
-
writer.writerow([sentence,
|
82 |
|
83 |
def generate(file, temperature, max_new_tokens, top_p, repetition_penalty, num_similar_sentences):
|
84 |
text = extract_text_from_excel(file)
|
@@ -88,7 +48,7 @@ def generate(file, temperature, max_new_tokens, top_p, repetition_penalty, num_s
|
|
88 |
with tempfile.NamedTemporaryFile(mode='w', newline='', delete=False, suffix='.csv') as tmp:
|
89 |
fieldnames = ['Original Sentence', 'Generated Sentence']
|
90 |
writer = csv.DictWriter(tmp, fieldnames=fieldnames)
|
91 |
-
writer.writeheader()
|
92 |
|
93 |
for sentence in sentences:
|
94 |
sentence = sentence.strip()
|
@@ -117,28 +77,7 @@ def generate(file, temperature, max_new_tokens, top_p, repetition_penalty, num_s
|
|
117 |
if not generated_sentences:
|
118 |
break
|
119 |
generated_sentence = generated_sentences.pop(random.randrange(len(generated_sentences)))
|
120 |
-
|
121 |
-
# Translate generated sentence to English
|
122 |
-
tokenizer, model = load_model()
|
123 |
-
src_lang = lang_id[language]
|
124 |
-
trg_lang = lang_id["English"]
|
125 |
-
tokenizer.src_lang = src_lang
|
126 |
-
with torch.no_grad():
|
127 |
-
encoded_input = tokenizer(generated_sentence, return_tensors="pt").to(device)
|
128 |
-
generated_tokens = model.generate(**encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang))
|
129 |
-
translated_sentence = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
130 |
-
|
131 |
-
# Translate original sentence to Azerbaijani
|
132 |
-
tokenizer, model = load_model()
|
133 |
-
src_lang = lang_id["English"]
|
134 |
-
trg_lang = lang_id["Azerbaijani"]
|
135 |
-
tokenizer.src_lang = src_lang
|
136 |
-
with torch.no_grad():
|
137 |
-
encoded_input = tokenizer(sentence, return_tensors="pt").to(device)
|
138 |
-
generated_tokens = model.generate(**encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang))
|
139 |
-
translated_sentence_az = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
140 |
-
|
141 |
-
writer.writerow({'Original Sentence': translated_sentence_az, 'Generated Sentence': translated_sentence})
|
142 |
|
143 |
except Exception as e:
|
144 |
print(f"Error generating data for sentence '{sentence}': {e}")
|
@@ -147,7 +86,7 @@ def generate(file, temperature, max_new_tokens, top_p, repetition_penalty, num_s
|
|
147 |
|
148 |
return tmp_path
|
149 |
|
150 |
-
gr.Interface(
|
151 |
fn=generate,
|
152 |
inputs=[
|
153 |
gr.File(label="Upload Excel File", file_count="single", file_types=[".xlsx"]),
|
@@ -156,7 +95,6 @@ gr.Interface(
|
|
156 |
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
|
157 |
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
|
158 |
gr.Slider(label="Number of similar sentences", value=10, minimum=1, maximum=20, step=1, interactive=True, info="Number of similar sentences to generate for each original sentence"),
|
159 |
-
gr.Dropdown(label="Language of the input data", choices=list(lang_id.keys()), value="English")
|
160 |
],
|
161 |
outputs=gr.File(label="Synthetic Data "),
|
162 |
title="SDG",
|
|
|
2 |
import gradio as gr
|
3 |
import random
|
4 |
import pandas as pd
|
5 |
+
from io import BytesIO
|
6 |
import csv
|
7 |
import os
|
8 |
+
import io
|
9 |
import tempfile
|
10 |
import re
|
|
|
|
|
11 |
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
14 |
|
15 |
+
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_1.2B")
|
16 |
+
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_1.2B")
|
17 |
+
|
18 |
+
def translate_to_english(text, source_lang):
|
19 |
+
encoded_input = tokenizer(text, return_tensors="pt")
|
20 |
+
generated_tokens = model.generate(**encoded_input, forced_bos_token_id=tokenizer.get_lang_id("en"))
|
21 |
+
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
22 |
+
return translated_text
|
23 |
+
|
24 |
+
def translate_to_azerbaijani(text):
|
25 |
+
encoded_input = tokenizer(text, return_tensors="pt")
|
26 |
+
generated_tokens = model.generate(**encoded_input, forced_bos_token_id=tokenizer.get_lang_id("az"))
|
27 |
+
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
28 |
+
return translated_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def extract_text_from_excel(file):
|
31 |
df = pd.read_excel(file)
|
32 |
text = ' '.join(df['Unnamed: 1'].astype(str))
|
33 |
+
source_lang = "az" # Azerbaijani
|
34 |
+
english_text = translate_to_english(text, source_lang)
|
35 |
+
return english_text
|
36 |
|
37 |
def save_to_csv(sentence, output, filename="synthetic_data.csv"):
|
38 |
+
azerbaijani_output = translate_to_azerbaijani(output)
|
39 |
with open(filename, mode='a', newline='', encoding='utf-8') as file:
|
40 |
writer = csv.writer(file)
|
41 |
+
writer.writerow([sentence, azerbaijani_output])
|
42 |
|
43 |
def generate(file, temperature, max_new_tokens, top_p, repetition_penalty, num_similar_sentences):
|
44 |
text = extract_text_from_excel(file)
|
|
|
48 |
with tempfile.NamedTemporaryFile(mode='w', newline='', delete=False, suffix='.csv') as tmp:
|
49 |
fieldnames = ['Original Sentence', 'Generated Sentence']
|
50 |
writer = csv.DictWriter(tmp, fieldnames=fieldnames)
|
51 |
+
writer.writeheader()
|
52 |
|
53 |
for sentence in sentences:
|
54 |
sentence = sentence.strip()
|
|
|
77 |
if not generated_sentences:
|
78 |
break
|
79 |
generated_sentence = generated_sentences.pop(random.randrange(len(generated_sentences)))
|
80 |
+
writer.writerow({'Original Sentence': sentence, 'Generated Sentence': generated_sentence})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
except Exception as e:
|
83 |
print(f"Error generating data for sentence '{sentence}': {e}")
|
|
|
86 |
|
87 |
return tmp_path
|
88 |
|
89 |
+
gr.Interface(
|
90 |
fn=generate,
|
91 |
inputs=[
|
92 |
gr.File(label="Upload Excel File", file_count="single", file_types=[".xlsx"]),
|
|
|
95 |
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
|
96 |
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
|
97 |
gr.Slider(label="Number of similar sentences", value=10, minimum=1, maximum=20, step=1, interactive=True, info="Number of similar sentences to generate for each original sentence"),
|
|
|
98 |
],
|
99 |
outputs=gr.File(label="Synthetic Data "),
|
100 |
title="SDG",
|