Update app.py
Browse files
app.py
CHANGED
@@ -14,64 +14,55 @@ client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
|
14 |
|
15 |
def extract_sentences_from_excel(file):
|
16 |
df = pd.read_excel(file)
|
17 |
-
|
18 |
-
sentences = text.split('.')
|
19 |
-
sentences = [s.strip() for s in sentences if s.strip() and s.strip() != 'nan']
|
20 |
return sentences
|
21 |
|
22 |
-
import re
|
23 |
-
|
24 |
-
def save_to_json(data, filename="synthetic_data.json"):
|
25 |
-
with open(filename, mode='w', encoding='utf-8') as file:
|
26 |
-
json_data = []
|
27 |
-
for item in data:
|
28 |
-
generated_sentences = []
|
29 |
-
confidence_scores = []
|
30 |
-
for match in re.finditer(r"{'generated_sentence': '(.+?)', 'confidence_score': ([\d\.]+)}", item['generated_data']):
|
31 |
-
generated_sentences.append(match.group(1))
|
32 |
-
confidence_scores.append(float(match.group(2)))
|
33 |
-
json_data.append({
|
34 |
-
'original_sentence': item['original_sentence'],
|
35 |
-
'generated_sentences': generated_sentences,
|
36 |
-
'confidence_scores': confidence_scores
|
37 |
-
})
|
38 |
-
json.dump(json_data, file, indent=4, ensure_ascii=False)
|
39 |
-
|
40 |
def generate(file, prompt, temperature, max_new_tokens, top_p, repetition_penalty):
|
41 |
sentences = extract_sentences_from_excel(file)
|
42 |
data = []
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
"max_new_tokens": max_new_tokens,
|
53 |
-
"top_p": top_p,
|
54 |
-
"repetition_penalty": repetition_penalty,
|
55 |
-
"do_sample": True,
|
56 |
-
"seed": 42,
|
57 |
-
}
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
|
|
66 |
|
67 |
-
|
68 |
-
print(f"Error generating data for sentence '{sentence}': {e}")
|
69 |
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
|
|
74 |
|
|
|
75 |
gr.Interface(
|
76 |
fn=generate,
|
77 |
inputs=[
|
@@ -82,8 +73,8 @@ gr.Interface(
|
|
82 |
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
|
83 |
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
|
84 |
],
|
85 |
-
outputs=gr.File(label="Synthetic Data
|
86 |
title="SDG",
|
87 |
-
description="AYE QABIL.",
|
88 |
allow_flagging="never",
|
89 |
).launch()
|
|
|
14 |
|
15 |
def extract_sentences_from_excel(file):
|
16 |
df = pd.read_excel(file)
|
17 |
+
sentences = df['metn'].astype(str).tolist()
|
|
|
|
|
18 |
return sentences
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def generate(file, prompt, temperature, max_new_tokens, top_p, repetition_penalty):
|
21 |
sentences = extract_sentences_from_excel(file)
|
22 |
data = []
|
23 |
|
24 |
+
generate_kwargs = {
|
25 |
+
"temperature": temperature,
|
26 |
+
"max_new_tokens": max_new_tokens,
|
27 |
+
"top_p": top_p,
|
28 |
+
"repetition_penalty": repetition_penalty,
|
29 |
+
"do_sample": True,
|
30 |
+
"seed": 42,
|
31 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
for sentence in sentences:
|
34 |
+
try:
|
35 |
+
stream = client.text_generation(f"{prompt} Output the response in the following JSON format: {{'generated_sentence': 'The generated sentence text', 'confidence_score': 0.9}} {sentence}", **generate_kwargs, stream=True, details=True, return_full_text=False)
|
36 |
+
output = ""
|
37 |
+
for response in stream:
|
38 |
+
output += response.token.text
|
39 |
+
data.append({"original_sentence": sentence, "generated_data": output})
|
40 |
+
except Exception as e:
|
41 |
+
print(f"Error generating data for sentence '{sentence}': {e}")
|
42 |
|
43 |
+
filename = "synthetic_data.json"
|
44 |
+
save_to_json(data, filename)
|
45 |
|
46 |
+
return filename
|
|
|
47 |
|
48 |
+
def save_to_json(data, filename):
|
49 |
+
json_data = []
|
50 |
+
for item in data:
|
51 |
+
generated_sentences = []
|
52 |
+
confidence_scores = []
|
53 |
+
for match in re.finditer(r"{'generated_sentence': '(.+?)', 'confidence_score': ([\d\.]+)}", item['generated_data']):
|
54 |
+
generated_sentences.append(match.group(1))
|
55 |
+
confidence_scores.append(float(match.group(2)))
|
56 |
+
json_data.append({
|
57 |
+
'original_sentence': item['original_sentence'],
|
58 |
+
'generated_sentences': generated_sentences,
|
59 |
+
'confidence_scores': confidence_scores
|
60 |
+
})
|
61 |
|
62 |
+
with open(filename, mode='w', encoding='utf-8') as file:
|
63 |
+
json.dump(json_data, file, indent=4, ensure_ascii=False)
|
64 |
|
65 |
+
# Gradio arayüzü
|
66 |
gr.Interface(
|
67 |
fn=generate,
|
68 |
inputs=[
|
|
|
73 |
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
|
74 |
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
|
75 |
],
|
76 |
+
outputs=gr.File(label="Synthetic Data"),
|
77 |
title="SDG",
|
78 |
+
description=" *AYE* QABIL.",
|
79 |
allow_flagging="never",
|
80 |
).launch()
|