Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,8 @@ import PyPDF2
|
|
4 |
import random
|
5 |
import pandas as pd
|
6 |
from io import StringIO
|
|
|
|
|
7 |
|
8 |
# Initialize the inference client with your chosen model
|
9 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
@@ -15,14 +17,25 @@ def extract_text_from_pdf(file):
|
|
15 |
text += pdf_reader.pages[page].extract_text()
|
16 |
return text
|
17 |
|
18 |
-
def
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
for sentence in sentences:
|
21 |
-
# Trim whitespace and skip if the sentence is empty
|
22 |
sentence = sentence.strip()
|
23 |
if not sentence:
|
24 |
continue
|
25 |
-
|
26 |
generate_kwargs = {
|
27 |
"temperature": temperature,
|
28 |
"max_new_tokens": max_new_tokens,
|
@@ -37,26 +50,12 @@ def generate_synthetic_data(sentences, temperature, max_new_tokens, top_p, repet
|
|
37 |
output = ""
|
38 |
for response in stream:
|
39 |
output += response.token.text
|
40 |
-
|
41 |
except Exception as e:
|
42 |
print(f"Error generating data for sentence '{sentence}': {e}")
|
43 |
-
|
44 |
-
synthetic_data.append(f"Error: {e}")
|
45 |
-
return synthetic_data
|
46 |
-
|
47 |
-
def generate(file, temperature, max_new_tokens, top_p, repetition_penalty):
|
48 |
-
# Extract text and split into sentences
|
49 |
-
text = extract_text_from_pdf(file)
|
50 |
-
sentences = text.split('.')
|
51 |
-
random.shuffle(sentences) # Shuffle sentences
|
52 |
-
|
53 |
-
synthetic_data = generate_synthetic_data(sentences, temperature, max_new_tokens, top_p, repetition_penalty)
|
54 |
|
55 |
-
|
56 |
-
df = pd.DataFrame(synthetic_data, columns=["Synthetic Data"])
|
57 |
-
csv_buffer = StringIO()
|
58 |
-
df.to_csv(csv_buffer, index=False)
|
59 |
-
return gr.File(value=csv_buffer.getvalue(), file_name="synthetic_data.csv")
|
60 |
|
61 |
gr.Interface(
|
62 |
fn=generate,
|
@@ -69,6 +68,6 @@ gr.Interface(
|
|
69 |
],
|
70 |
outputs="file",
|
71 |
title="Synthetic Data Generation",
|
72 |
-
description="This tool generates synthetic data from the sentences in your PDF.",
|
73 |
allow_flagging="never",
|
74 |
).launch()
|
|
|
4 |
import random
|
5 |
import pandas as pd
|
6 |
from io import StringIO
|
7 |
+
import csv
|
8 |
+
import os
|
9 |
|
10 |
# Initialize the inference client with your chosen model
|
11 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
|
|
17 |
text += pdf_reader.pages[page].extract_text()
|
18 |
return text
|
19 |
|
20 |
+
def save_to_csv(sentence, output, filename="synthetic_data.csv"):
|
21 |
+
with open(filename, mode='a', newline='', encoding='utf-8') as file:
|
22 |
+
writer = csv.writer(file)
|
23 |
+
writer.writerow([sentence, output])
|
24 |
+
|
25 |
+
def generate(file, temperature, max_new_tokens, top_p, repetition_penalty):
|
26 |
+
text = extract_text_from_pdf(file)
|
27 |
+
sentences = text.split('.')
|
28 |
+
random.shuffle(sentences) # Shuffle sentences
|
29 |
+
|
30 |
+
# CSV dosyası için başlık
|
31 |
+
if not os.path.exists("synthetic_data.csv"):
|
32 |
+
save_to_csv("Original Sentence", "Synthetic Data")
|
33 |
+
|
34 |
for sentence in sentences:
|
|
|
35 |
sentence = sentence.strip()
|
36 |
if not sentence:
|
37 |
continue
|
38 |
+
|
39 |
generate_kwargs = {
|
40 |
"temperature": temperature,
|
41 |
"max_new_tokens": max_new_tokens,
|
|
|
50 |
output = ""
|
51 |
for response in stream:
|
52 |
output += response.token.text
|
53 |
+
save_to_csv(sentence, output)
|
54 |
except Exception as e:
|
55 |
print(f"Error generating data for sentence '{sentence}': {e}")
|
56 |
+
save_to_csv(sentence, f"Error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
return gr.File(value="synthetic_data.csv", file_name="synthetic_data.csv")
|
|
|
|
|
|
|
|
|
59 |
|
60 |
gr.Interface(
|
61 |
fn=generate,
|
|
|
68 |
],
|
69 |
outputs="file",
|
70 |
title="Synthetic Data Generation",
|
71 |
+
description="This tool generates synthetic data from the sentences in your PDF and saves it to a CSV file.",
|
72 |
allow_flagging="never",
|
73 |
).launch()
|