from huggingface_hub import InferenceClient import gradio as gr import pandas as pd # Inference client initialization client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") # Function to format the prompt def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt # Function to generate text based on prompt and history def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) # Format the prompt formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) # Generate text using InferenceClient stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output # Additional input components for Gradio interface additional_inputs=[ gr.File(label="Upload CSV or Document", type="upload"), # Max file size is 2 GB gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"), gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"), gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"), gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens") ] # Function to read uploaded CSV or Document def read_file(file): if file is None: return None elif file.name.endswith('.csv'): return pd.read_csv(file) elif file.name.endswith('.txt'): with open(file.name, 'r') as f: return f.read() # Gradio Chat Interface gr.ChatInterface( fn=generate, inputs=[ gr.Textbox(label="Prompt"), gr.Textbox(label="History", placeholder="User1: Hello\nBot: Hi there!\nUser1: How are you?"), gr.Textbox(label="System Prompt"), ], outputs=gr.Textbox(label="Response"), title="Synthetic-data-generation-aze", additional_inputs=additional_inputs, examples=[ ["What is the capital of France?", "Paris", "Ask me anything"], ["How are you?", "I'm good, thank you!", "User"], ], allow_flagging=False, allow_upvoting=False, allow_duplicate_of_same_input=False, flagging_options=["Inappropriate", "Incorrect", "Offensive"], thumbs=None, ).launch()