import json from huggingface_hub import InferenceClient import gradio as gr import PyPDF2 import random import pandas as pd from io import BytesIO import csv import os import io import tempfile import re client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") def extract_sentences_from_excel(file): df = pd.read_excel(file) text = ' '.join(df['Unnamed: 1'].astype(str)) sentences = text.split('.') sentences = [s.strip() for s in sentences if s.strip() and s.strip() != 'nan'] return sentences def save_to_json(data, filename="synthetic_data.json"): with open(filename, mode='a', encoding='utf-8') as file: json.dump(data, file, indent=4, ensure_ascii=False) def generate(file, prompt, temperature, max_new_tokens, top_p, repetition_penalty): sentences = extract_sentences_from_excel(file) data = [] with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.json') as tmp: for sentence in sentences: sentence = sentence.strip() if not sentence: continue generate_kwargs = { "temperature": temperature, "max_new_tokens": max_new_tokens, "top_p": top_p, "repetition_penalty": repetition_penalty, "do_sample": True, "seed": 42, } try: stream = client.text_generation(f"{prompt} Output the response in the following JSON format: {{'generated_sentence': 'The generated sentence text', 'confidence_score': 0.9}}", **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text try: json_output = json.loads(output) data.append({"original_sentence": sentence, "generated_data": json_output}) except json.JSONDecodeError: print(f"Error decoding JSON for sentence '{sentence}': {output}") except Exception as e: print(f"Error generating data for sentence '{sentence}': {e}") save_to_json(data, tmp.name) tmp_path = tmp.name return tmp_path gr.Interface( fn=generate, inputs=[ gr.File(label="Upload Excel File", file_count="single", file_types=[".xlsx"]), gr.Textbox(label="Prompt", placeholder="Enter your prompt here"), gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"), gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"), gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"), gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"), ], outputs=gr.File(label="Synthetic Data "), title="SDG", description="AYE QABIL.", allow_flagging="never", ).launch()