from huggingface_hub import InferenceClient import gradio as gr import random import pandas as pd from io import BytesIO client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") def extract_text_from_excel(file): df = pd.read_excel(file) text = ' '.join(df['data'].astype(str)) return text def generate_sentences(text, temperature, max_new_tokens, top_p, repetition_penalty): sentences = text.split('.') random.shuffle(sentences) # Shuffle sentences generated_data = [] for sentence in sentences: sentence = sentence.strip() if not sentence: continue generate_kwargs = { "temperature": temperature, "max_new_tokens": max_new_tokens, "top_p": top_p, "repetition_penalty": repetition_penalty, "do_sample": True, "seed": 42, } try: stream = client.text_generation(sentence, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text generated_sentences = [s.strip() for s in output.split('.') if s.strip()] generated_data.extend([(sentence, generated_sentence) for generated_sentence in generated_sentences]) except Exception as e: print(f"Error generating data for sentence '{sentence}': {e}") return generated_data def save_to_csv(data, filename="synthetic_data.csv"): with open(filename, mode='w', newline='', encoding='utf-8') as file: writer = csv.writer(file) writer.writerow(['Original Sentence', 'Generated Sentence']) writer.writerows(data) def generate(file, temperature, max_new_tokens, top_p, repetition_penalty): text = extract_text_from_excel(file) data = generate_sentences(text, temperature, max_new_tokens, top_p, repetition_penalty) save_to_csv(data) return gr.File.update(value=filename, visible=True) gr.Interface( fn=generate, inputs=[ gr.File(label="Upload Excel File", file_count="single", file_types=[".xlsx"]), gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"), gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"), gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"), gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"), ], outputs=gr.File(label="Synthetic Data"), title="SDG", description="AYE QABIL.", allow_flagging="never", ).launch()