import json from huggingface_hub import InferenceClient import gradio as gr import random import pandas as pd from io import BytesIO import csv import os import io import tempfile import re client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") def extract_sentences_from_excel(file): df = pd.read_excel(file) sentences = df['metn'].astype(str).tolist() return sentences def generate(file, prompt, temperature, max_new_tokens, top_p, repetition_penalty): sentences = extract_sentences_from_excel(file) data = [] generate_kwargs = { "temperature": temperature, "max_new_tokens": max_new_tokens, "top_p": top_p, "repetition_penalty": repetition_penalty, "do_sample": True, "seed": 42, } for sentence in sentences: try: stream = client.text_generation(f"{prompt} Output the response in the following JSON format: {{'generated_sentence': 'The generated sentence text', 'confidence_score': 0.9}} {sentence}", **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text data.append({"original_sentence": sentence, "generated_data": output}) except Exception as e: print(f"Error generating data for sentence '{sentence}': {e}") filename = "synthetic_data.json" save_to_json(data, filename) return filename def save_to_json(data, filename): json_data = [] for item in data: generated_sentences = [] confidence_scores = [] for match in re.finditer(r"{'generated_sentence': '(.+?)', 'confidence_score': ([\d\.]+)}", item['generated_data']): generated_sentences.append(match.group(1)) confidence_scores.append(float(match.group(2))) json_data.append({ 'original_sentence': item['original_sentence'], 'generated_sentences': generated_sentences, 'confidence_scores': confidence_scores }) with open(filename, mode='w', encoding='utf-8') as file: json.dump(json_data, file, indent=4, ensure_ascii=False) # Gradio arayüzü gr.Interface( fn=generate, inputs=[ gr.File(label="Upload Excel File", file_count="single", file_types=[".xlsx"]), gr.Textbox(label="Prompt", placeholder="Enter your prompt here"), gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"), gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"), gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"), gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"), ], outputs=gr.File(label="Synthetic Data"), title="SDG", description=" *AYE* QABIL.", allow_flagging="never", ).launch()