File size: 6,331 Bytes
ee6eca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9e7413
 
ee6eca1
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d5835
ee6eca1
 
 
 
 
 
 
 
 
 
 
 
 
a2d5835
ee6eca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d5835
 
 
ee6eca1
 
 
a2d5835
ee6eca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d5835
ee6eca1
 
 
 
 
 
 
 
 
 
 
 
 
 
8b182af
ee6eca1
 
 
 
 
 
 
 
 
 
 
 
 
 
d34c7e2
ee6eca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d530147
ee6eca1
 
 
 
 
 
 
 
 
 
8b182af
ee6eca1
58122ec
0aa83a7
9e976f8
 
8b182af
ee6eca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b23394b
 
ee6eca1
 
 
b23394b
ee6eca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import gradio as gr
import PIL.Image
from pathlib import Path
import pandas as pd
from diffusers.pipelines import StableDiffusionPipeline
import torch
import argparse
import os
import warnings
from safetensors.torch import load_file
import yaml

warnings.filterwarnings("ignore")

OUTPUT_DIR = "OUTPUT"
cuda_device = 1
device = f"cuda:{cuda_device}" if torch.cuda.is_available() else "cpu"

print("DEVICE: ", device)

TITLE = "Demo for Generating Chest X-rays using Diferent Parameter-Efficient Fine-Tuned Stable Diffusion Pipelines"
INFO_ABOUT_TEXT_PROMPT = "INFO_ABOUT_TEXT_PROMPT"
INFO_ABOUT_GUIDANCE_SCALE = "INFO_ABOUT_GUIDANCE_SCALE"
INFO_ABOUT_INFERENCE_STEPS = "INFO_ABOUT_INFERENCE_STEPS"
EXAMPLE_TEXT_PROMPTS = [
    "No acute cardiopulmonary abnormality.",
    "Normal chest radiograph.",
    "No acute intrathoracic process.",
    "Mild pulmonary edema.",
    "No focal consolidation concerning for pneumonia",
    "No radiographic evidence for acute cardiopulmonary process",
]


def load_adapted_unet(unet_pretraining_type, pipe):

    """
    Loads the adapted U-Net for the selected PEFT Type

    Parameters:
        unet_pretraining_type (str): The type of PEFT to use for generating the X-ray
        pipe (StableDiffusionPipeline): The Stable Diffusion Pipeline to use for generating the X-ray

    Returns:
        None
    """

    sd_folder_path = "runwayml/stable-diffusion-v1-5"
    exp_path = ''

    if unet_pretraining_type == "freeze":
        pass

    elif unet_pretraining_type == "svdiff":
        print("SV-DIFF UNET")

        pipe.unet = load_unet_for_svdiff(
            sd_folder_path,
            spectral_shifts_ckpt=os.path.join(
                os.path.join(exp_path, "unet"), "spectral_shifts.safetensors"
            ),
            subfolder="unet",
        )
        for module in pipe.unet.modules():
            if hasattr(module, "perform_svd"):
                module.perform_svd()

    elif unet_pretraining_type == "lorav2":
        exp_path = os.path.join(exp_path, "pytorch_lora_weights.safetensors")
        pipe.unet.load_attn_procs(exp_path)
    else:
        # exp_path = unet_pretraining_type + "_" + "diffusion_pytorch_model.safetensors"
        # state_dict = load_file(exp_path)
        state_dict = load_file(unet_pretraining_type + "_" + "diffusion_pytorch_model.safetensors")
        print(pipe.unet.load_state_dict(state_dict, strict=False))


def loadSDModel(unet_pretraining_type, cuda_device):

    """
    Loads the Stable Diffusion Model for the selected PEFT Type

    Parameters:
        unet_pretraining_type (str): The type of PEFT to use for generating the X-ray
        cuda_device (str): The CUDA device to use for generating the X-ray

    Returns:
        pipe (StableDiffusionPipeline): The Stable Diffusion Pipeline to use for generating the X-ray
    """

    sd_folder_path = "runwayml/stable-diffusion-v1-5"

    pipe = StableDiffusionPipeline.from_pretrained(sd_folder_path, revision="fp16")

    load_adapted_unet(unet_pretraining_type, pipe)
    pipe.safety_checker = None

    return pipe


def predict(
    unet_pretraining_type,
    input_text,
    guidance_scale=4,
    num_inference_steps=75,
    device="0",
    OUTPUT_DIR="OUTPUT",
):

    BARPLOT_TITLE = "Tunable Parameters for {} Fine-Tuning".format(unet_pretraining_type)
    NUM_TUNABLE_PARAMS = {
        "full": 86,
        "attention": 26.7,
        "bias": 0.343,
        "norm": 0.2,
        "norm_bias_attention": 26.7,
        "lorav2": 0.8,
        "svdiff": 0.222,
        "difffit": 0.581,
    }

    cuda_device = f"cuda:{device}" if torch.cuda.is_available() else "cpu"
    
    print("Loading Pipeline for {} Fine-Tuning".format(unet_pretraining_type))
    sd_pipeline = loadSDModel(
        unet_pretraining_type=unet_pretraining_type,
        cuda_device=cuda_device,
    )

    sd_pipeline.to(cuda_device)

    result_image = sd_pipeline(
        prompt=input_text,
        height=224,
        width=224,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
    )

    result_pil_image = result_image["images"][0]

    # Create a Bar Plot displaying the number of tunable parameters for the selected PEFT Type
    df = pd.DataFrame(
        {
            "Fine-Tuning Strategy": list(NUM_TUNABLE_PARAMS.keys()),
            "Number of Tunable Parameters": list(NUM_TUNABLE_PARAMS.values()),
        }
    )

    df = df[df["PEFT Type"].isin(["full", unet_pretraining_type])].reset_index(
        drop=True
    )

    bar_plot = gr.BarPlot(
        value=df,
        x="Fine-Tuning Strategy",
        y="Number of Tunable Parameters",
        title=BARPLOT_TITLE,
        vertical=True,
        height=300,
        width=300,
        interactive=True,
    )

    return result_pil_image, bar_plot


# Create a Gradio interface
"""
Input Parameters:
    1. PEFT Type: (Dropdown) The type of PEFT to use for generating the X-ray
    2. Input Text: (Textbox) The text prompt to use for generating the X-ray
    3. Guidance Scale: (Slider) The guidance scale to use for generating the X-ray
    4. Num Inference Steps: (Slider) The number of inference steps to use for generating the X-ray

Output Parameters:
    1. Generated X-ray Image: (Image) The generated X-ray image
    2. Number of Tunable Parameters: (Bar Plot) The number of tunable parameters for the selected PEFT Type
"""
iface = gr.Interface(
    fn=predict,
    inputs=[
        gr.Dropdown(
            ["full", "difffit", "norm", "bias", "attention", "norm_bias_attention"],
            value="full",
            label="PEFT Type",
        ),
        gr.Dropdown(
            EXAMPLE_TEXT_PROMPTS, info=INFO_ABOUT_TEXT_PROMPT, label="Input Text", value=EXAMPLE_TEXT_PROMPTS[0]
        ),
        gr.Slider(
            minimum=1,
            maximum=10,
            value=4,
            step=1,
            info=INFO_ABOUT_GUIDANCE_SCALE,
            label="Guidance Scale",
        ),
        gr.Slider(
            minimum=1,
            maximum=100,
            value=75,
            step=1,
            info=INFO_ABOUT_INFERENCE_STEPS,
            label="Num Inference Steps",
        ),
    ],
    outputs=[gr.Image(type="pil"), gr.BarPlot()],
    live=True,
    analytics_enabled=False,
    title=TITLE,
)

# Launch the Gradio interface
iface.launch(share=True)