File size: 1,359 Bytes
f80cc50
8ddc567
72f0cff
 
f80cc50
 
8ddc567
f80cc50
8ddc567
 
f80cc50
8ddc567
 
 
 
 
 
 
 
 
 
 
 
 
f80cc50
 
 
8ddc567
f80cc50
8ddc567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f80cc50
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr
from transformers import pipeline
from utils import *

pipe = pipeline(model="raminass/scotus-v10", top_k=13, padding=True, truncation=True)

max_textboxes = 100


# https://www.gradio.app/guides/controlling-layout
def greet(opinion):
    chunks = chunk_data(remove_citations(opinion))["text"].to_list()
    result = average_text(chunks, pipe)
    k = len(chunks)
    wrt_boxes = []
    for i in range(k):
        wrt_boxes.append(gr.Textbox(chunks[i], visible=True))
        wrt_boxes.append(gr.Label(value=result[1][i], visible=True))
    return (
        [result[0]]
        + wrt_boxes
        + [gr.Textbox(visible=False), gr.Label(visible=False)] * (max_textboxes - k)
    )


with gr.Blocks() as demo:
    opinion = gr.Textbox(label="Opinion")
    op_level = gr.outputs.Label(num_top_classes=13, label="Overall")
    greet_btn = gr.Button("Predict")
    textboxes = []
    for i in range(max_textboxes):
        t = gr.Textbox(f"Textbox {i}", visible=False, label=f"Paragraph {i+1} Text")
        par_level = gr.Label(
            num_top_classes=5, label=f"Paragraph {i+1} Prediction", visible=False
        )
        textboxes.append(t)
        textboxes.append(par_level)

    greet_btn.click(
        fn=greet,
        inputs=opinion,
        outputs=[op_level] + textboxes,
    )


if __name__ == "__main__":
    demo.launch()